Prof. Michael Kozdron

Lecture \#13: Analyticity and the Cauchy-Riemann Equations

Question. Suppose that $f(z)=u(z)+i v(z)$. Under what conditions on $u=u(z)=u(x, y)$ and $v=v(z)=v(x, y)$ is $f(z)$ analytic?

Answer. We certainly need f to be differentiable at z_{0}. This means that f is defined in some neighbourhood of z_{0} and

$$
\begin{equation*}
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \tag{*}
\end{equation*}
$$

exists. (In particular, the value of the limit is independent of the path $\Delta z \rightarrow 0$.) Let $\Delta z=\Delta x+i \Delta y$. We know that ($*$) exists if (i) $\Delta y=0$ and $\Delta x \rightarrow 0$, and (ii) $\Delta x=0$ and $\Delta y \rightarrow 0$. Consider first the case $\Delta y=0$. We have

$$
\begin{aligned}
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} & =\frac{f\left(z_{0}+\Delta x\right)-f\left(z_{0}\right)}{\Delta x} \\
& =\frac{f\left(x_{0}+\Delta x+i y_{0}\right)-f\left(x_{0}+i y_{0}\right)}{\Delta x} \\
& =\frac{u\left(x_{0}+\Delta x, y_{0}\right)+i v\left(x_{0}+\Delta x, y_{0}\right)-\left(u\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right)\right)}{\Delta x} \\
& =\frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}+i \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x}
\end{aligned}
$$

Now consider the case $\Delta x=0$. We have

$$
\begin{aligned}
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} & =\frac{f\left(z_{0}+i \Delta y\right)-f\left(z_{0}\right)}{i \Delta y} \\
& =\frac{f\left(x_{0}+i y_{0}+i \Delta y\right)-f\left(x_{0}+i y_{0}\right)}{i \Delta y} \\
& =\frac{u\left(x_{0}, y_{0}+\Delta y\right)+i v\left(x_{0}, y_{0}+\Delta y\right)-\left(u\left(x_{0}, y_{0}\right)+i v\left(x_{0}, y_{0}\right)\right)}{i \Delta y} \\
& =\frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}-i \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
\end{aligned}
$$

Since both of these are expressions for $f^{\prime}\left(z_{0}\right)$ in the limit, we obtain by equating real and imaginary parts that

$$
\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x}=\lim _{\Delta y \rightarrow 0} \frac{v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)}{\Delta y}
$$

and

$$
\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x}=-\lim _{\Delta y \rightarrow 0} \frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta y}
$$

Equivalently, we find two expressions for $f^{\prime}\left(z_{0}\right)$, namely

$$
f^{\prime}\left(z_{0}\right)=\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)+i \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)-i \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)
$$

and so

$$
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right) .
$$

These are the celebrated Cauchy-Riemann equations.
Theorem 13.1. If $f(z)=u(z)+i v(z)=u(x, y)+i v(x, y)$ is differentiable at z_{0}, then the Cauchy-Riemann equations are satisfied at $z_{0}=x_{0}+i y_{0}$; that is, if $f^{\prime}\left(z_{0}\right)$ exists, then

$$
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=\frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad \frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=-\frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)
$$

This theorem is most useful, however, when considered in the contrapositive.
Corollary 13.2. Consider $f(z)=u(z)+i v(z)=u(x, y)+i v(x, y)$. If the Cauchy-Riemann equations are not satisfied by f at $\left(x_{0}, y_{0}\right)$, then f is not differentiable at z_{0}. In particular, if f is not differentiable at z_{0}, then f is not analytic at z_{0}.

Example 13.3. Let $f(z)=\bar{z}=x-i y$ so that

$$
u(x, y)=x \quad \text { and } \quad v(x, y)=-y
$$

We find

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=1, & \frac{\partial v}{\partial y}=-1 \\
\frac{\partial v}{\partial x}=0, & \frac{\partial u}{\partial y}=0
\end{array}
$$

Since the Cauchy-Riemann equations are not satisfied for any z_{0}, we conclude that f is nowhere differentiable.

Example 13.4. Let $f(z)=|z|^{2}=x^{2}+y^{2}$ so that

$$
u(x, y)=x^{2} \quad \text { and } \quad v(x, y)=y^{2}
$$

We find

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}\left(x_{0}, y_{0}\right)=2 x_{0}, & \frac{\partial v}{\partial y}\left(x_{0}, y_{0}\right)=0 \\
\frac{\partial v}{\partial x}\left(x_{0}, y_{0}\right)=0, & \frac{\partial u}{\partial y}\left(x_{0}, y_{0}\right)=2 y_{0}
\end{array}
$$

The Cauchy-Riemann equations are only satisfied at $z_{0}=\left(x_{0}, y_{0}\right)=(0,0)$. Since the CauchyRiemann equations are NOT satisfied at $z_{0} \neq 0$, we conclude that f is not differentiable at $z_{0} \in \mathbb{C} \backslash\{0\}$. Hence, f is not analytic at 0 . It is very important to stress that we CANNOT use the Cauchy-Riemann equations to determine whether or not $f^{\prime}(0)$ exists. (Using the definition of derivative, we showed in Example 12.3 that $f^{\prime}(0)=0$.)

Exercise 13.5. Use the Cauchy-Riemann equations to show that $f(z)=\operatorname{Im} z$ is nowhere differentiable.

Exercise 13.6. Use the Cauchy-Riemann equations to show that $f(z)=\operatorname{Re} z$ is nowhere differentiable.

The key observation is that Theorem 13.1 gives us a necessary condition for differentiability, namely if f is differentiable at z_{0}, then f satisfies the Cauchy-Riemann equations at z_{0}. It does not, however, give us a sufficient condition for a function to be differentiable. That is, it is possible for a function $f=u+i v$ to satisfy the Cauchy-Riemann equations at z_{0}, yet not be differentiable at z_{0}.

Exercise 13.7. Consider the function

$$
f(z)=f(x+i y)= \begin{cases}\frac{x^{4 / 3} y^{5 / 3}+i x^{5 / 3} y^{4 / 3}}{x^{2}+y^{2}}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Show that the Cauchy-Riemann equations hold at $z=0$, but that f is not differentiable at $z=0$. (Hint: Consider $\Delta z \rightarrow 0$ along (i) the real axis, and (ii) the line $y=x$.)

