Lecture \#12: Limits, Continuity, and Differentiability

Definition. Let $f(z)$ be a function defined in some neighbourhood of z_{0}, except possibly at z_{0} itself. We say that $f(z)$ converges to w_{0} as z converges to z_{0}, written

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0}
$$

if for every $\epsilon>0$ there exists a $\delta>0$ such that $\left|f(z)-w_{0}\right|<\epsilon$ whenever $0<\left|z-z_{0}\right|<\delta$.
Definition. We say that $f(z)$ is continuous at z_{0} if

$$
\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
$$

Remark. This is the same definition as in calculus except that the condition $0<\left|z-z_{0}\right|<\delta$ allows z to approach z_{0} in any direction as shown in Figure 12.1. This makes limits much more subtle with complex variables.

Figure 12.1: z can approach z_{0} from any direction.
Definition. Let $f(z)$ be defined in a neighbourhood of z_{0}. The derivative of $f(z)$ at z_{0} is

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} z} f(z)\right|_{z_{0}}=f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided that the limit exists.
Remark. The limit must be independent of path $\Delta z \rightarrow 0$ in order for the derivative to exist.

Example 12.1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=z$. Show that $f(z)$ is differentiable at z_{0} for every $z_{0} \in \mathbb{C}$.

Solution. Since

$$
\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\left(z_{0}+\Delta z\right)-\left(z_{0}\right)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta z}{\Delta z}=1
$$

for all $z_{0} \in \mathbb{C}$, we conclude that f is differentiable at z_{0} for every $z_{0} \in \mathbb{C}$ with $f^{\prime}\left(z_{0}\right)=1$.

Example 12.2. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=\bar{z}$. Is $f(z)$ differentiable at $z_{0} \in \mathbb{C}$?
Solution. Observe that

$$
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{\overline{\left(z_{0}+\Delta z\right)}-\overline{\left(z_{0}\right)}}{\Delta z}=\frac{\overline{\Delta z}}{\Delta z}
$$

and so the question is to determine what happens as $\Delta z \rightarrow 0$. In particular, is the value independent of path? To see that it is not, let $\Delta z=\Delta x+i \Delta y$ so that

$$
\lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z}=\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \frac{\overline{\Delta x+i \Delta y}}{\Delta x+i \Delta y}=\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}
$$

Consider approaching 0 along the positive real axis. This means that $\Delta y=0$ so that $\Delta z=\Delta x$ and

$$
\Delta z \rightarrow 0 \text { if and only if } \Delta x \rightarrow 0
$$

Therefore, we conclude

$$
\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}=\lim _{\Delta x \rightarrow 0, \Delta y=0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}=1
$$

Now consider approaching 0 along the positive imaginary axis. This means that $\Delta x=0$ so that $\Delta z=i \Delta y$ and

$$
\Delta z \rightarrow 0 \text { if and only if } \Delta y \rightarrow 0
$$

Therefore, we conclude

$$
\lim _{\Delta x \rightarrow 0, \Delta y \rightarrow 0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}=\lim _{\Delta x=0, \Delta y \rightarrow 0} \frac{\Delta x-i \Delta y}{\Delta x+i \Delta y}=\lim _{\Delta y \rightarrow 0} \frac{-i \Delta y}{i \Delta y}=-1
$$

Since the value of the limit is not independent of path, we conclude that $f(z)=\bar{z}$ is nowhere differentiable!

Example 12.3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=|z|^{2}$. Is $f(z)$ differentiable at $z_{0} \in \mathbb{C}$?
Solution. Observe that

$$
\begin{aligned}
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=\frac{\left|z_{0}+\Delta z\right|^{2}-\left|z_{0}\right|^{2}}{\Delta z} & =\frac{\left(z_{0}+\Delta z\right)\left(\overline{z_{0}}+\overline{\Delta z}\right)-z_{0} \overline{z_{0}}}{\Delta z} \\
& =\frac{z_{0} \overline{z_{0}}+\overline{z_{0}} \Delta z+z_{0} \overline{\Delta z}+\overline{\Delta z} \Delta z-z_{0} \overline{z_{0}}}{\Delta z} \\
& =\overline{z_{0}}+z_{0} \frac{\overline{\Delta z}}{\Delta z}+\overline{\Delta z}
\end{aligned}
$$

and so the question is to determine what happens as $\Delta z \rightarrow 0$. Consider

$$
\begin{equation*}
\lim _{\Delta z \rightarrow 0}\left(\overline{z_{0}}+z_{0} \frac{\overline{\Delta z}}{\Delta z}+\overline{\Delta z}\right) \tag{*}
\end{equation*}
$$

We know that

$$
\lim _{\Delta z \rightarrow 0} \frac{\overline{\Delta z}}{\Delta z} \text { does not exist }
$$

and so the middle term in $(*)$ does not exist except when $z_{0}=0$. However, if $z_{0}=0$, then

$$
\lim _{\Delta z \rightarrow 0} \frac{f(0+\Delta z)-f(0)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \overline{\Delta z}=0 .
$$

This means that $f(z)=|z|^{2}$ is differentiable at $z_{0}=0$ with $f^{\prime}(0)=0$, but is not differentiable at any $z_{0} \in \mathbb{C} \backslash\{0\}$.

Remark. The function $f(z)=\bar{z}$ is nowhere differentiable, and the function $f(z)=|z|^{2}$ is differentiable only at 0 . As we will see more formally later, functions that involve \bar{z} are typically not differentiable.

Definition. A function $f(z)$ is analytic in some domain D if it is differentiable at each point in D. (Recall that a domain is an open, connected set. In particular, D cannot be a single point.)

Definition. A function $f(z)$ is analytic at z_{0} if it is differentiable at z_{0} and if it is differentiable at all z in some neighbourhood of z_{0}.

Example 12.4. The function $f(z)=z$ is analytic at 0 since it is differentiable at 0 and is differentiable at all z in any neighbourhood of 0 . (In fact, $f(z)=z$ is analytic in \mathbb{C}.) The function $f(z)=|z|^{2}$ is differentiable at 0 , but it is not analytic at 0 since it is not differentiable at any $z \neq 0$.

