Lecture \#11: Complex Functions as Mappings

Example 11.1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by $f(z)=z^{2}$. Determine the image of the set $S=\{z \in \mathbb{C}:|z| \leq 2, \operatorname{Re}(z)=\operatorname{Im}(z)\}$ under f.

Solution. We begin by observing that $\{\operatorname{Re}(z)=\operatorname{Im}(z)\}$ corresponds to the line $y=x$ in cartesian coordinates and $\{|z| \leq 2\}$ represents the disk of radius 2 centred at the origin. Thus,

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: y=x, x^{2}+y^{2} \leq 2^{2}\right\}
$$

or, equivalently in polar form,

$$
S=\left\{z=r e^{i \theta}: 0 \leq r \leq 2, \theta \in\{\pi / 4,-3 \pi / 4\}\right\}
$$

Thus, if $z \in S$, then $z=r e^{i \theta}$ so that $w=z^{2}=r^{2} e^{2 i \theta}=\rho e^{i \varphi}$ where $\rho=r^{2} \in[0,4]$ and $\varphi=2 \theta \in\{\pi / 2,-3 \pi / 2\}$. Of course, $\operatorname{Arg}\left(e^{i \pi / 2}\right)=\operatorname{Arg}\left(e^{-3 i \pi / 2}\right)=\pi / 2$ which implies that

$$
f(S)=\left\{w=\rho e^{i \varphi}: 0 \leq \rho \leq 4, \varphi=\pi / 2\right\}
$$

which describes that part of the imaginary axis between 0 and 4 ; i.e.,

$$
f(S)=\{w \in \mathbb{C}: \operatorname{Re}(w)=0,0 \leq \operatorname{Im}(w) \leq 4\}
$$

Example 11.2. Let $D=\{z \in \mathbb{C}:|z-1|<1\}$, and suppose that $f: D \rightarrow \mathbb{C}$ is given by $f(z)=1 / z$. Determine $f(D)$, the image of D under f.

Solution. Suppose that $w=f(z)=1 / z$. The condition $|z-1|<1$ is equivalent to the condition

$$
\left|\frac{1}{w}-1\right|<1 \Longleftrightarrow|1-w|<|w| .
$$

Hence, $f(D)=\{w \in \mathbb{C}:|1-w|<|w|\}$. The problem with this description of $f(D)$ is that it is not at all clear which set of points is being described. Compare this to Problem \#5 on Assignment \#1. If we let $w=u+i v$, then

$$
|1-w|<|w| \Longleftrightarrow|1-w|^{2}<|w|^{2} \Longleftrightarrow(u-1)^{2}+v^{2}<u^{2}+v^{2} \Longleftrightarrow-2 u+1<0 \Longleftrightarrow u>\frac{1}{2}
$$

That is,

$$
f(D)=\{w \in \mathbb{C}: \operatorname{Re}(w)>1 / 2\}
$$

Example 11.3. Let $D=\{z \in \mathbb{C}:-1<\operatorname{Re}(z)<1\}$, and suppose that $f: D \rightarrow S$ is given by

$$
f(z)=\frac{z+1}{z-1}
$$

Determine $f(D)$, the image of D under f.

Solution. Observe that we can write $w=f(z)$ as

$$
w=f(z)=\frac{z+1}{z-1}=\frac{z-1+2}{z-1}=1+\frac{2}{z-1},
$$

and so to determine $f(D)$ we simply break the calculation into separate steps since $f(z)$ is just the composition of 4 simple functions. It is

- a translation by -1 , i.e., $z \mapsto z-1$, followed by
- an inversion, i.e., $z \mapsto 1 / z$, followed by
- an expansion, i.e., $z \mapsto 2 z$, followed by
- a translation by +1 , i.e., $z \mapsto z+1$.

That is, if $h_{1}(z)=z-1, h_{2}(z)=1 / z, h_{3}(z)=2 z$, and $h_{4}(z)=z+1$, then

$$
f(z)=h_{4} \circ h_{3} \circ h_{2} \circ h_{1}(z)=h_{4}\left(h_{3}\left(h_{2}\left(h_{1}(z)\right)\right)\right)=1+\frac{2}{z-1} .
$$

Note that the image of h_{1} is easy to determine. It is

$$
S_{2}=h_{1}(S)=\{z \in \mathbb{C}:-2<\operatorname{Re}(z)<0\} .
$$

The image of S_{2} under h_{3} is a little more involved to compute. Let $w=1 / z$ and set $w=u+i v$ so that

$$
z=\frac{1}{w}=\frac{1}{u+i v}=\frac{u}{u^{2}+v^{2}}-i \frac{v}{u^{2}+v^{2}} . .
$$

The condition that $-2<\operatorname{Re}(z)<0$ is equivalent to $-2<\operatorname{Re}(1 / w)<0$ and so u and v must satisfy

$$
-2<\frac{u}{u^{2}+v^{2}}<0
$$

This means that we must have (i) $u<0$ and (ii) $-2 u^{2}-2 v^{2}<u$. Now observe that

$$
\begin{gathered}
-2 u^{2}-2 v^{2}<u \Longleftrightarrow 2 u^{2}+u+2 v^{2}>0 \Longleftrightarrow 2 u^{2}+u+\frac{1}{8}+2 v^{2}>\frac{1}{8} \\
\Longleftrightarrow 2\left(u+\frac{1}{4}\right)^{2}+2 v^{2}>\frac{1}{8} \Longleftrightarrow\left(u+\frac{1}{4}\right)^{2}+v^{2}>\frac{1}{4^{2}} .
\end{gathered}
$$

Thus, $S_{3}=h_{2}\left(S_{2}\right)$ consists of those complex variables in quadrants II and III that are outside the disk of radius $1 / 4$ centred at $(-1 / 4,0)$.
Next, we see that $S_{4}=h_{3}\left(S_{3}\right)$ consists of those complex variables in quadrants II and III that are outside the disk of radius $1 / 2$ centred at $(-1 / 2,0)$.
Finally, $f(S)=h_{4}\left(S_{4}\right)$ is obtained by translating S_{4} by 1 ; that is, $f(S)$ consists of those points outside of the disk of radius $1 / 2$ centred at $(1 / 2,0)$ having real part strictly less than 1. In other words,

$$
f(S)=\{w \in \mathbb{C}:|w-1 / 2|>1 / 2, \operatorname{Re}(w)<1\} .
$$

