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Mathematics 312 (Fall 2012) September 5, 2012
Prof. Michael Kozdron

Lecture #1: Introduction to Complex Variables

In calculus, we study

• algebraic operations with real numbers,

• functions, limits, continuity, graphing,

• differentiation and applications,

• integration and applications, and

• series and sequences.

In complex analysis, we will develop these topics in a parallel manner. Let z = a + ib,
i =
√
−1, with a, b ∈ R. We will study

• properties of the complex plane and algebraic operations with complex variables,

• properties of functions f(z) with z complex, limits, graphing, differentiation, and

• integration of function f(z) with z complex, say

∫
C

f(z) dz where C is some curve in

the complex plane.

Algebra of Complex Variables

The motivation for introducing i =
√
−1 is to solve the equation x2 + 1 = 0. In general, the

fact that quadratic equations can have no real roots motivates introducing complex variables.

Notation. A complex variable z is of the form z = a+ ib where a and b are real numbers.

Definition. Two complex variables z1 = a1 + ib1 and z2 = a2 + ib2 are equal if and only if
a1 = a2 and b1 = b2.

Notation. Let z = a + ib be a complex variable. The real part of z is Re(z) = a and the
imaginary part of z is Im(z) = b.

Fact. The complex variables z1 and z2 are equal iff Re(z1) = Re(z2) and Im(z1) = Im(z2).

Note that we are using the phrase complex variable instead of complex number. This is
because we wish to stress that z = a+ ib is not a number in the usual, or real, sense. Instead
it is an object that we have created.
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Arithmetic of Complex Variables

Let i =
√
−1, z1 = a1 + ib1, and z2 = a2 + ib2 with a1, a2, b1, b2 ∈ R. We define the operations

of addition, multiplication, and division (provided either a2 6= 0 or b2 6= 0) as follows.

Addition. z1 + z2 = (a1 + a2) + i(b1 + b2)

Multiplication. z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(b1a2 + a1b2)

Division.
z1

z2

=
a1 + ib1

a2 + ib2

=
a1 + ib1

a2 + ib2

a2 − ib2

a2 − ib2

=
a1a2 + b1b2

a2
2 + b2

2

+ i
b1a2 − a1b2

a2
2 + b2

2

Remark. One way to remember these definitions is to manipulate the expressions just as
you would for real numbers, but replacing i2 by −1, i3 by −i, and i4 by 1. For example,

(a1 + ib1)(a2 + ib2) = a1a2 + ia1b2 + ib1a2 + i2b1b2 = a1a2 − b1b2 + i(b1a2 + a1b2).

The key is that the motivation for making the definitions we have comes from our experience
with real numbers. However, there is no underlying reason why these expressions for addition,
multiplication, and division of complex variables are true. They are simply definitions.

It can now be easily shown that if addition, multiplication, and division are defined in this
way, then the following hold for complex variables z1, z2, z3.

Commutative Law. z1 + z2 = z2 + z1 and z1z2 = z2z1

Associative Law. (z1 + z2) + z3 = z1 + (z2 + z3) and (z1z2)z3 = z1(z2z3)

Distributive Law. z1(z2 + z3) = z1z2 + z1z3

Exercise 1.1. Verify the commutative law, associative law, and distributive law hold for
complex variables.

Remark. Consider the complex variable z = a + ib. We have z = 0 iff a = 0 and b = 0.
Note that the complex variable 0 is shorthand for the complex variable 0+ i0. Moreover, the
real number a can be identified with the complex variable a + i0. We will, however, write
this complex variable simply as a.

Proposition 1.2. Consider the complex variables z1 = a1+ib1 and z2 = a2+ib2. If z1z2 = 0,
then either z1 = 0 or z2 = 0.

Proof. Since z1z2 = (a1a2 − b1b2) + i(b1a2 + a1b2) = 0 we conclude that

a1a2 − b1b2 = 0 and b1a2 + a1b2 = 0.

An equivalent way to write this system of equations is in matrix notation as[
a2 −b2

b2 a2

] [
a1

b1

]
=

[
0
0

]
.
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In order to complete the proof, we will show that if z2 6= 0, then z1 must be 0. Therefore,
assume that z2 6= 0 so that either a2 6= 0 or b2 6= 0. In particular, this implies that

det

[
a2 −b2

b2 a2

]
= a2

2 + b2
2 > 0.

However, recall from Math 122 that the only solution to the matrix system Av = 0 with
detA > 0 is v = 0. This implies that a1 = b1 = 0 so z1 = 0 as required.

We end this discussion with one more convention concerning complex variables that is moti-
vated by the arithmetic of real numbers. If k is a positive integer and z is a complex variable,
then the power or exponential zk is shorthand for multiplication of z by itself k times; for
instance,

z4 = zzzz.

We can then compute the product zzzz using the associative law and the definition of
multiplication of complex variables along with the identities i2 = −1, i3 = −i, and i4 = 1.
If m is a negative integer, say m = −k for some non-negative integer k, define zm = z−k by

z−k =
1

zk
.

Finally, take z0 = 1.

Exercise 1.3. Verify that if z = 1 + i, then z4 = −4.

Cartesian Representation (or Geometric Interpretation) of Complex Variables

We can represent the complex variable z = a + ib as the point in the plane (a, b) as shown
in Figure 1.1.

����

����

y-axis or imaginary axis

(a, b)

√
a2 + b2

(0, 0) x-axis or real axis

Figure 1.1: The identification of C with R2.

Note. In other words, if we let C = {z = a+ib : a, b ∈ R} denote the set of complex variables,
then we can identify C with the two-dimensional cartesian plane R2 via the identification

z = a+ ib ∈ C←→ (a, b) ∈ R2.

This identification is actually an isomorphism and so an algebraist might say that C and
R2 are isomorphic and write C ∼= R2. We will not be concerned with isomorphisms in this
class.
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Observe that the distance from the point (a, b) in the plane to the origin (0, 0) is

√
a2 + b2.

This motivates the following definition.

Definition. Let z = a + ib be a complex variable. The modulus or absolute value of z,
denoted |z|, is defined as

|z| =
√
a2 + b2.

Definition. Let z = a + ib be a complex variable. The (complex) conjugate of z, denoted
z̄, is defined as

z̄ = a− ib.

Exercise 1.4. Suppose that z is a complex variable. Show that zz̄ = |z|2.
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Mathematics 312 (Fall 2012) September 7, 2012
Prof. Michael Kozdron

Lecture #2: Algebraic Properties of C

Recall that i =
√
−1 and

C = {z = a+ ib : a, b ∈ R}
denotes the set of complex variables. Also recall that if z = a+ib ∈ C, then the modulus of z
is |z| =

√
a2 + b2 and the conjugate of z is z = a− ib. Geometrically, conjugation represents

reflection in the real axis; see Figure 2.1.

��
��
��
��

��
��
��
��

�
�
�
�

z = (a, b)

z = (a,−b)

Figure 2.1: Geometric representation of complex conjugation.

Proposition 2.1. If z = a+ ib is a complex variable, then
√
z z is a real number.

Proof. Observe that
z z = (a+ ib)(a− ib) = a2 + b2 = |z|2.

Since |z|2 = z z is necessarily real and non-negative we can take square roots to obtain
√
z z = |z| =

√
a2 + b2 ∈ R

as required.

Proposition 2.2. If z1, z2 ∈ C, then z1z2 = z1 z2.

Proof. Let z1 = a1 + ib1 and z2 = a2 + ib2 so that

z1z2 = (a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(b1a2 + a1b2)

implying that
z1z2 = (a1a2 − b1b2)− i(b1a2 + a1b2).

On the other hand,

z1 z2 = (a1 − ib1)(a2 − ib2) = a1a2 − b1b2 − ib1a2 − ia1b2 = (a1a2 − b1b2)− i(b1a2 + a1b2)

as well, and the proof is complete.

Exercise 2.3. Let z1, z2 ∈ C. Show that z1 + z2 = z1 + z2.
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Exercise 2.4. Let z ∈ C. Show that (z) = z.

Before proving the next proposition, we observe the geometric interpretation of |z|, Re(z),
and Im(z) as shown in Figure 2.2 below.
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�
�z

Im(z)

Re(z)

|z|

Figure 2.2: Geometric interpretation of |z|, Re(z), and Im(z).

Proposition 2.5. If z ∈ C, then

(a) Re(z) = 1
2
(z + z),

(b) Im(z) = 1
2i

(z − z),

(c) Re(z) ≤ |z|, and

(d) Im(z) ≤ |z|.

Proof. Let z = a+ ib so that z = a− ib. Solving the system of equations

z = a+ ib and z = a− ib

for a and b gives

a =
1

2
(z + z) and b =

1

2i
(z − z).

Moreover, since |z| =
√
a2 + b2, we see that

Re(z) = a ≤
√
a2 + b2 = |z| and Im(z) = b ≤

√
a2 + b2 = |z|

as required.

Proposition 2.6. If z ∈ C, then |z| = |z|.

Proof. Let z = a+ ib so that z = a− ib. Note that

|z| =
√
a2 + (−b)2 =

√
a2 + b2 = |z|

as required.

Geometrically this proposition says that length doesn’t change under a reflection through
the real axis; see Figure 2.3.
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z

z

|z|

|z|

Figure 2.3: Geometric interpretation of |z| = |z|.

Proposition 2.7. If z1, z2 are complex variables, then |z1z2| = |z1||z2|.

Proof. Recall that |w|2 = ww for any w ∈ C. Let w = z1z2 so that

|z1z2|2 = (z1z2)(z1z2) = z1z2(z1 z2) = (z1 z1)(z2 z2) = |z1|2|z2|2

using Proposition 2.2 and the Commutative Law. Since the moduli in question are non-
negative real numbers we can take square roots to obtain

|z1z2| = |z1||z2|

as required.

Proposition 2.8. If z1, z2 are complex variables with z2 6= 0, then

z1

z2

=
z1 z2

|z2|2
.

Proof. Observe that
z1

z2

=
z1

z2

z2

z2

=
z1 z2

|z2|2
as required.

Theorem 2.9 (Triangle Inequality). If z1, z2 are complex variables, then

|z1 + z2| ≤ |z1|+ |z2|.

Proof. Recall that |w|2 = ww for any w ∈ C. Taking w = z1 + z2 implies

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2) = z1 z1 + z2 z1 + z1 z2 + z2 z2

= |z1|2 + |z2|2 + z2 z1 + z1 z2

using Exercise 2.3 and the Distributive Law. The next step is to deal with z2 z1 + z1 z2.
Recall that 2 Re(w) = w + w. If we take w = z1 z2, then

w = z1 z2 = z1 (z2) = z1 z2
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using Proposition 2.2 and Exercise 2.4, and so we see that

z2 z1 + z1 z2 = w + w = 2 Re(w) = 2 Re(z1 z2).

However, we also know from Proposition 2.5 that Re(w) ≤ |w| which implies that

Re(z1 z2) ≤ |z1 z2| = |z1||z2| = |z1||z2|.

Therefore, we conclude that

|z1 + z2|2 ≤ |z1|2 + |z2|2 + 2|z1||z2| = (|z1|+ |z2|)2.

Since both sides of the inequality involve only non-negative real numbers, we can take square
roots to obtain

|z1 + z2| ≤ |z1|+ |z2|
as required.

2–4
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Lecture #3: Geometric Properties of C

Recall that if z = a+ ib is a complex variable, then the modulus of z is |z| =
√
a2 + b2 which

may be interpreted geometrically as the distance from the origin to the point (a, b) ∈ R2.
Since we can identify the complex variable z ∈ C with the point (a, b) ∈ R2, we conclude
that |z| represents the distance from z to the origin.

Example 3.1. Describe the set {z ∈ C : |z| = 1}.
Solution. Since |z| represents the distance from the origin, the set {z ∈ C : |z| = 1}
represents the set of all points that are at a distance 1 from the origin. This describes all
points on the unit circle in the plane; see Figure 3.1.

|z| = 1

1

Figure 3.1: The set {z ∈ C : |z| = 1}.

It is possible to derive this result analytically. If we let z = x+ iy, then |z|2 = x2 + y2. Since
|z| = 1 if and only if |z|2 = 1 if and only if x2 + y2 = 1, we conclude that

{z ∈ C : |z| = 1} = {(x, y) ∈ R2 : x2 + y2 = 1},

the unit circle.

In general, we see that the set {z ∈ C : |z| = r} describes a circle of radius r centred at the
origin. We can verify this using cartesian coordinates as follows. Suppose that z = x+ iy so
that |z| =

√
x2 + y2. Hence, |z| = r if and only if |z|2 = r2, or equivalently, if and only if

x2 + y2 = r2.

Moreover, if z0, z ∈ C, then one can easily verify that |z − z0| represents geometrically the
distance from z to z0. This means that if z0 ∈ C is given, then the set

{z ∈ C : |z − z0| = r}

describes the circle of radius r centred at z0.

Example 3.2. Describe the set {z ∈ C : |z − i| = 2}.
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Solution. If we write i = 0 + i1, then we see that i corresponds to the point (0, 1) in the
plane. Therefore, the set in question represents a circle of radius 2 centred at (0, 1).

��
��
��
��

i

|z − i| = 2
2

Figure 3.2: The set {z ∈ C : |z − i| = 2}.
Example 3.3. Describe the set of z ∈ C satisfying |z + 2| = |z − 1|.

Solution. Geometrically, |z+ 2| represents the distance from z to −2, and |z−1| represents
the distance from z to 1. This means that we must find all z ∈ C that are equidistant from
both −2 and 1. If we view −2 as the point (−2, 0) and 1 as the point (1, 0), then we can
easily conclude that the point (−1/2, 0) is halfway between them. Thus, the point −1/2
belongs to the set {z ∈ C : |z + 2| = |z − 1|}. However, other points belong to this set. In
fact, by drawing an isosceles triangle with altitude along the Re(z) = −1/2 line, we conclude
that any point on the line Re(z) = −1/2 satisfies the condition |z + 2| = |z − 1|. This is
described in Figure 3.3.
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−1/2 1−2

Re(z) = −1/2

Figure 3.3: The set {z ∈ C : |z + 2| = |z − 1|}.

We can derive this result analytically as follows. Let z = x + iy so that the condition
|z + 2| = |z − 1| is equivalent to |z + 2|2 = |z − 1|2 which in turn is equivalent to

(x+ 2)2 + y2 = (x− 1)2 + y2.

Now (x+ 2)2 = (x− 1)2 if and only if x2 + 4x+ 4 = x2− 2x+ 1 if and only if 6x = −3 which
is, of course, equivalent to x = −1/2.

Example 3.4. Describe the set of z ∈ C satisfying |z − 1| = Re(z) + 1.
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Solution. In this case, it is easier to solve the problem analytically. If we write z = x+ iy,
then |z − 1| = Re(z) + 1 is equivalent to |z − 1|2 = (Re(z) + 1)2 since |z − 1| = Re(z) + 1
is an equality between non-negative real numbers. Now, |z − 1|2 = (x − 1)2 + y2 and
(Re(z) + 1)2 = (x+ 1)2 so that the set described is

(x− 1)2 + y2 = (x+ 1)2.

Now,
y2 = (x+ 1)2 − (x− 1)2 = [(x+ 1) + (x− 1)][(x+ 1)− (x− 1)] = 2x

(since (x + 1)2 − (x − 1)2 is a difference of perfect squares, this is easy to simplify) which
represents a parabola parallel to the real axis as shown in Figure 3.4.

y2 = 2x

Figure 3.4: The parabola y2 = 2x.

Remark. In high school we do things like solve the equation |x + 2| = |x − 1| for x. The
solutions are points (i.e., real numbers). When we consider the same equation but in complex
variables, |z + 2| = |z − 1|, the solution is a curve in the complex plane. We can also see
that the real solution, −1/2 is one of the complex variables solutions of |z + 2| = |z − 1|.
However, we could have deduced this from the complex variables result. Here is how.

(1) Consider the real equation that we wish to solve, namely |x+ 2| = |x− 1| for x ∈ R.

(2) Complexify the equation; that is, replace real variables by complex variables to obtain
|z + 2| = |z − 1| for z ∈ C.

(3) Determine the solutions to the complex variable problem; in this case, the answer is
Re(z) = −1/2.

(4) Since the solution must hold for all z satisfying the condition, it must necessarily
hold for all z = x + i0 ∈ C satisfying the condition. Thus, we see that the only
z = x + i0 ∈ C satisfying Re(z) = −1/2 is z = −1/2, and we conclude that the only
solution to |x+ 2| = |x− 1| for x ∈ R is x = −1/2.

We will see many instances of this strategy in this course; in order to solve a real problem
it will sometimes be easier to complexify, solve the complex variables problem, and extract
the real solutions from the complex solutions.

Example 3.5. Describe the set of z ∈ C satisfying z2 + (z)2 = 2.
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Solution. Suppose that z = x + iy so that z2 = (x + iy)2 = x2 − y2 + i2xy and (z)2 =
(x− iy)2 = x2 − y2 − i2xy. This implies

z2 + (z)2 = (x2 − y2 + i2xy) + (x2 − y2 − i2xy) = 2x2 − 2y2

and so the set of z ∈ C satisfying z2 + (z)2 = 2 is equivalent to the set

{(x, y) ∈ R2 : x2 − y2 = 1}

which describes a hyperbola as shown in Figure 3.5.

x2 − y2 = 1 x2 − y2 = 1

Figure 3.5: The hyperbola x2 − y2 = 1.

Exercise 3.6. Describe the curve generated by |z + 3|+ |z − 3| = 10.

Solution. The curve is an ellipse which can be described in cartesian coordinates by

x2

52
+
y2

42
= 1.
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Lecture #4: Polar Form of a Complex Variable

Suppose that z = x + iy is a complex variable. Our goal is to define the polar form of a
complex variable. We start with the definition. We will then describe how our experience
with real variables motivates this definition.

Definition. Suppose that z = x+ iy ∈ C with z 6= 0. The polar form of z is defined as reiθ

where r ≥ 0 satisfies r =
√
x2 + y2 and θ is the unique angle in (−π, π] satisfying

cos θ =
x

|z| and sin θ =
y

|z| .

The polar form of z = 0 is, by convention, z = 0ei0 = 0.

Consider the pair (x, y) ∈ R2 in cartesian coordinates. We know from Math 213 that an
equivalent way to describe a point in the plane is in terms of polar coordinates. That is,
we can describe the point (x, y) in terms of its distance r from the origin and the angle the
point makes with the positive x-axis. This leads to the change-of-variables

x = r cos θ and y = r sin θ

where r ≥ 0 and 0 ≤ θ < 2π. If we try to invert this transformation and solve for r and θ,
then we find

r =
√
x2 + y2 and θ = arctan(y/x).

The trouble here is that the inverse equation

θ = arctan(y/x)

is not true for pairs (x, y) in the second or third quadrants. The reason for this is the
convention that the standard interpretation of the arctangent function places its range in
the first and fourth quadrants; that is, by convention, the domain of the tangent function is
restricted to (−π/2, π/2) in order for the inverse of tangent function to be single-valued. Note
the reason for this convention. The only asymptotes of the tangent function on (−π/2, π/2)
are at the endpoints. If instead we considered the tangent function on the interval [0, π],
then we would have the issue that the tangent function is not defined at π/2. This would
then lead to the domain of the tangent function being [0, π/2) ∪ (π/2, π] which is ugly. The
conclusion is that we cannot define θ simply as θ = arctan(y/x) and so we instead define it
as the unique angle θ ∈ (−π, π] satisfying

cos θ =
x

|z| and sin θ =
y

|z| .

4–1



Question. When we are working with real variables (in particular in Math 213), we define
θ as the unique angle θ ∈ [0, 2π) satisfying

cos θ =
x

|z| and sin θ =
y

|z| .

In the definition of the polar form of a complex variable, why don’t we define θ in the same
way?

Answer. While it is true that there is a unique angle θ in any half-open half-closed interval
of length 2π satisfying

cos θ =
x

|z| and sin θ =
y

|z| ,

we must make a convention as to which choice of definite interval we wish to make. We
declare (−π, π] as our convention.

Perhaps you will like this better.

Definition. Suppose that z = x + iy ∈ C, z 6= 0. Define the argument of z, denoted arg z,
to be any solution θ of the pair of equations

cos θ =
x

|z| and sin θ =
y

|z| .

Note that if θ0 qualifies as a value of arg z, then so do

θ0 ± 2π, θ0 ± 4π, θ0 ± 6π, . . . .

Moreover, every value of arg z must be one of these.

However, we still have the problem of multi-valuedness. For definiteness, we will want only
a single value of the argument. This leads to the following definition.

Definition. Suppose that z = x+ iy ∈ C. Define the principal value of the argument of z,
denoted Arg z, to be the unique value of arg z ∈ (−π, π].

Note that we did not avoid the convention that the angle belong to (−π, π]. We just hid
it in our definitions. Actually, there is a more sophisticated reason for the convention that
Arg z ∈ (−π, π]. This has to do with the definition of square root. We will want to maintain
the convention that the square root of a positive real number is a positive real number. This
is easiest to achieve if we choose Arg z ∈ (−π, π].

Definition. Suppose that z ∈ C. We define the polar form of z to be reiθ where r = |z| and
θ = Arg z. For convenience, we will write z = reiθ.

Note that if z = 0, then we take, by convention, Arg 0 = 0 and arg 0 = {0,±2π,±4π, . . .}.

Example 4.1. Write z = 1 + i in polar form and identify arg z.

4–2



Solution. If z = 1 + i, then
|z| =

√
12 + 12 =

√
2 = r.

Moreover,

cos θ =
1√
2

and sin θ =
1√
2

implies that

θ =
π

4
± 2πk

for k ∈ Z. Thus,

Arg z =
π

4
and arg z =

{π
4
,
π

4
± 2π,

π

4
± 4π, . . .

}
=
{π

4
± 2πk : k ∈ Z

}
.

Hence, the polar form of z = 1 + i is √
2eiπ/4.

Equivalently, we can represent z as an ordered pair (x, y) ∈ R2 as

z = (1, 1) = (
√

2 cos(π/4),
√

2 sin(π/4)).

Suppose that z = reiθ is the polar form of z ∈ C. As in the previous example, we can write z
in cartesian coordinates as z = (r cos θ, r sin θ). Using our identification of (x, y) ∈ R2 with
z = x+ iy ∈ C, we conclude that an equivalent representation of z is

z = r cos θ + ir sin θ.

This is sometimes called the polar form of z.

Definition. Suppose that z ∈ C. The polar form of z is defined as

z = (r cos θ, r sin θ) = r cos θ + ir sin θ = reiθ

where r = |z| and θ = Arg z.

If we take r = 1 in the definition of polar form, then we conclude that

(cos θ, sin θ) = cos θ + i sin θ = eiθ

which leads to the following definition.

Definition. The complex exponential eiθ is defined as eiθ = cos θ + i sin θ.

Properties of the Complex Exponential eiθ

Proposition 4.2. e−iθ = eiθ

Proof. We find
e−iθ = cos(−θ) + i sin(−θ) = cos(θ)− i sin(θ) = eiθ

and the proof is complete.
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Proposition 4.3. |eiθ| = 1

Proof. Using the previous proposition, we find

|eiθ| = eiθeiθ = eiθe−iθ = (cos(θ) + i sin(θ))(cos(θ)− i sin(θ)) = cos2(θ) + sin2(θ) = 1

as required.

Proposition 4.4.
1

eiθ
= e−iθ

Proof. We find

1

eiθ
=

1

cos(θ) + i sin(θ)
=

1

cos(θ) + i sin(θ)

cos(θ)− i sin(θ)

cos(θ)− i sin(θ)
=

cos(θ)− i sin(θ)

|eiθ|
= cos(θ)− i sin(θ)

= e−iθ

and the proof is complete.

Proposition 4.5. eiθ = ei(θ+2πk), k ∈ Z

Proof. Since the real-valued sine and cosine functions are each 2π-periodic, we know that

cos(θ) = cos(θ + 2πk) and sin(θ) = sin(θ + 2πk)

so that
eiθ = cos(θ) + i sin(θ) = cos(θ + 2πk) + i sin(θ + 2πk) = ei(θ+2πk)

as required.

Proposition 4.6. eiθ1eiθ2 = ei(θ1+θ2)

Proof. By definition,

eiθ1eiθ2 = (cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= cos(θ1) cos(θ2) + i cos(θ1) sin(θ2) + i sin(θ1) cos(θ2)− sin(θ1) sin(θ2)

= cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i(cos(θ1) sin(θ2) + sin(θ1) cos(θ2))

= cos(θ1 + θ2) + i sin(θ1 + θ2)

= ei(θ1+θ2)

completing the proof.

Proposition 4.7.
eiθ1

eiθ2
= ei(θ1−θ2)
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Proof. Using our previous propositions, we find

eiθ1

eiθ2
= eiθ1e−iθ2 = eiθ1−iθ2 = ei(θ1−θ2)

as required.

Corollary 4.8. If z1 = r1e
iθ1 and z2 = r2e

iθ2, then

z1z2 = r1r2e
i(θ1+θ2),

and if z2 6= 0, then
z1

z2

=
r1

r2

ei(θ1−θ2).

Exercise 4.9. Prove the previous corollary.

Powers: An Application of Complex Exponentials

Recall that if a ∈ R and n, m ∈ Z, then (an)m = anm. In particular, if x ∈ R, then
(ex)n = enx. As we will now show, this same sort of result is true for the complex exponential.

Theorem 4.10. Let z = reiθ be the polar form of the complex variable z. If n is a non-
negative integer, then

zn = rneinθ.

Proof. The proof is by induction. Clearly it is true for n = 1. If n = 2, then we find from
Corollary 4.8 that

z2 = (reiθ)(reiθ) = r2ei(θ+θ) = r2ei2θ.

If n = 3, then
z3 = z2z = (r2ei2θ)(reiθ) = r3ei(2θ+θ) = r3ei3θ.

In general, if zk = rkeikθ for some k, then

zk+1 = zkz = (rkeikθ)(reiθ) = rk+1ei(kθ+θ) = rk+1ei(k+1)θ

which completes the proof.

We can now use this theorem to derive de Moivre’s formula.

Theorem 4.11 (de Moivre’s Formula). If n is a positive integer, then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof. Consider z = cos θ + i sin θ so that the polar form of z is z = eiθ. On the one hand
we have

zn = (cos θ + i sin θ)n.
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On the other hand we have

zn = (eiθ)n = einθ = cos(nθ) + i sin(nθ).

Equating the two gives

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

as required.

Remark. If we take θ = π (and r = 1) in definition of complex exponential, then we have
one of the most magical formulas in all of mathematics:

eiπ = cos(π) + i sin(π) = −1 + i0 = −1,

or equivalently,

eiπ + 1 = 0

which is a formula relating all five fundamental constants of mathematics!!!! The constant e
comes from calculus, π comes from geometry, i comes from algebra, and 1 is the basic unit
for generating the arithmetic system from the usual counting numbers.
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Lecture #5: Applications of Complex Exponentials

Recall from last class that we defined the complex exponential eiθ as

eiθ = cos θ + i sin θ.

Using this we concluded that the polar form of z ∈ C can be written as

z = reiθ = r(cos θ + i sin θ) = r cos θ + ir sin θ

where r = |z| and θ = Arg(z). We also derived de Movire’s formula, namely

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

for any positive integer n.

Remark. On numerous occasions we have seen that the motivation for a complex variables
definition comes from the corresponding real variable definition. Therefore, it is natural to
ask whether the definition of eiθ is consistent with the definition from calculus. Recall that
the Taylor series for ex about x = 0 is

ex =
∞∑
j=0

xj

j!
.

Therefore, if we take x = iθ, we have

eiθ =
∞∑
j=0

(iθ)j

j!
= 1 + (iθ) +

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
= cos θ + i sin θ.

We now observe that

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ.

If we solve this system of equations for cos θ and sin θ, then

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ
2i

.

Definition. If z = x+ iy ∈ C, we define the complex exponential ez as

ez = ex+iy = exeiy = ex(cos y + i sin y).
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Note that
|ez| = |exeiy| = |ex||eiy| = |ex| = ex

since |eiy| = | cos y + i sin y| =
√

cos2 y + sin2 y = 1 and ex > 0 for x ∈ R. In particular, if
Re(z) ≤ 0, then |ez| ≤ 1.

Example 5.1. Find an identity for

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) (∗)

where n is a positive integer and θ ∈ R. Note that in the study of Fourier series it is
important to be able to evaluate such an expression.

Before solving this problem, we need to establish a preliminary result. Recall the formula
for a geometric series. If x ∈ R with x 6= 1, then

1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x
for any positive integer n. Moreover, if |x| < 1, then we can let n→∞ to obtain

1 + x+ x2 + x3 + · · · = 1

1− x.

Proposition 5.2. If z ∈ C with z 6= 1, then

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z (∗∗)

for any positive integer n.

Proof. Since

(1 + z+ z2 + · · ·+ zn)(1− z) = (1 + z+ z2 + · · ·+ zn)− (z+ z2 + z3 + · · ·+ zn+1) = 1− zn+1

and z 6= 1 we can divide by (1− z) to obtain the result.

Solution. We can now find an identity for (∗). If we take z = eiθ in (∗∗), we obtain

1 + (eiθ) + (eiθ)2 + · · ·+ (eiθ)n =
1− (eiθ)n+1

1− eiθ

or, equivalently,

1 + eiθ + ei2θ + · · ·+ einθ =
1− ei(n+1)θ

1− eiθ .

Taking the real parts of the previous express implies that

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) = Re

(
1− ei(n+1)θ

1− eiθ
)
.
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We will now find a simple expression for the right side of the previous equality. Note that

1− ei(n+1)θ

1− eiθ =
1− ei(n+1)θ

1− eiθ
e−iθ/2

e−iθ/2
=
ei(n+ 1

2
)θ − e−iθ/2

eiθ/2 − eiθ/2 =
1

2i

ei(n+ 1
2

)θ − e−iθ/2
sin(θ/2)

.

Now observe that

ei(n+ 1
2

)θ − e−iθ/2 =
[
cos((n+ 1

2
)θ) + i sin((n+ 1

2
)θ)
]
− [cos(θ/2)− i sin(θ/2)]

= cos((n+ 1
2
)θ)− cos(θ/2) + i

[
sin((n+ 1

2
)θ) + sin(θ/2)

]
and so

Re

(
1− ei(n+1)θ

1− eiθ
)

= Re

[
1

2i

ei(n+ 1
2

)θ − e−iθ/2
sin(θ/2)

]

=
1

2 sin(θ/2)
Re

[
1
i

(
cos((n+ 1

2
)θ)− cos(θ/2) + i

[
sin((n+ 1

2
)θ) + sin(θ/2)

]) ]
=

1

2 sin(θ/2)

[
sin((n+ 1

2
)θ) + sin(θ/2)

]
.

That is,

1 + cos θ + cos(2θ) + · · ·+ cos(nθ) =
sin((n+ 1

2
)θ) + sin(θ/2)

2 sin(θ/2)
.

Example 5.3. Express sin3 θ in terms of sin θ and sin(3θ).

Solution. We know from de Moivre’s formula that (cos θ+ i sin θ)n = cos(nθ) + i sin(nθ) for
any positive integer n and so

sin(3θ) = Im[(cos θ + i sin θ)3].

We know from the binomial theorem that

(a+ b)n =
n∑
j=0

(
n

j

)
ajbn−j

and so

(x+ iy)3 = x3 + 3x2(iy) + 3x(iy)2 + (iy)3 = x3 − 3xy2 + i(3x2y − y3).

Taking x = cos θ and y = sin θ yields

(cos θ + i sin θ)3 = cos3 θ − 3 cos θ sin2 θ + i(3 cos2 θ sin θ − sin3 θ)

which in turn implies that

sin(3θ) = 3 cos2 θ sin θ − sin3 θ.

Substituting in sin2 θ + cos2 θ = 1 gives

sin(3θ) = 3(1− sin2 θ) sin θ − sin3 θ = 3 sin θ − 3 sin3 θ − sin3 θ = 3 sin θ − 4 sin3 θ

so that

sin3 θ =
3

4
sin θ − 1

4
sin(3θ).
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Lecture #6: Powers and Roots of Algebraic Equations

Recall from high school that one of the things we do with real numbers is solve equations for
them. For instance, we can ask for all values of x ∈ R such that 2x+ 3 = 0. The answer, of
course, is x = −3/2. We can then try to solve more sophisticated equations. For instance,
we can ask for all values of x ∈ R such that x3−2x2−x = 0. There are three possible values
of x, namely

x ∈ {0, 1−
√

2, 1 +
√

2}.
However, we quickly discover that not every equation has a real solution. For instance, there
are no real values of x such that x2 + 1 = 0. Indeed, this is one of the motivations for
introducing complex variables. Having completed our study of the arithmetic of complex
variables, we will now start to solve equations involving them. We will then discover the
Fundamental Theorem of Algebra which will tell us that any polynomial of degree n will
have n complex roots.

Example 6.1. Let a 6= 0, b, c ∈ C be given. Find all values of z ∈ C such that az2+bz+c = 0.

Solution. Just as in high school we can use the quadratic formula. That is,

az2 + bz + c = a

(
z2 +

bz

a

)
+ c = a

(
z2 +

bz

a
+
b2

4a

)
− b2

4
+ c = a

(
z +

b

2a

)2

− b2

4
+ c.

We would now like to take square roots to obtain two solutions, namely

z =

√
b2

4a
− c

a
− b

2a
=
−b+

√
b2 − 4ac

2a

and

z =
−b−

√
b2 − 4ac

2a
.

It is natural to ask, however, if this is truly a valid solution; in particular, what is meant by
a complex square root.

nth Roots of a Complex Variable

Instead of restricting ourselves to just square roots of complex variables, we will consider
nth roots. Suppose that z ∈ C and that n is a positive integer. Our goal is to determine
n
√
z = z1/n. By definition, this means that we must find all values of ζ ∈ C such that ζn = z.

Suppose that we write ζ = ρeiϕ where ρ = |ζ| and ϕ = Arg(ζ). Suppose further that ρ = 1
so that ζ lies on the unit circle. Therefore,

ζ2 = ei2ϕ and ζ3 = ei3ϕ

also lie on the unit circle as illustrated in Figure 6.1.
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ζ2 = e2iϕ ζ = eiϕ

ζ3 = e3iϕ

Figure 6.1: Geometric interpretation of ζ = eiϕ, ζ2, ζ3.

Indeed, it is clear that when |ζ| = 1, successive powers of ζ (which represent repeated
multiplication by ζ) correspond to successive rotations by an angle of ϕ in the complex
plane. This important idea will be expanded upon later.

Example 6.2. Find the two square roots of 1; that is, determine all values of z ∈ C such
that z2 = 1.

Solution. It is pretty clear that the two solutions are ζ1 = 1 and ζ2 = −1. However, we will
derive these solutions using the polar form of a complex variable as this is the method that
will work in more generality. Therefore, suppose that ζ = eiϕ so that |ζ| = 1. We also write
1 as 1 = ei0. In order to have ζ2 = 1 we must have

ζ2 = (eiϕ)2 = ei2ϕ = ei0 = 1.

This implies that 2ϕ = 0 so ϕ = 0. The result is

ζ = eiϕ = ei0 = 1.

However, we must also realize that there is more than one value of θ for which eiθ = 1.
Indeed, ei2π = 1. Therefore, in order to have ζ2 = 1, we must have

ζ2 = (eiϕ)2 = ei2ϕ = ei2π = 1.

This implies that 2ϕ = 2π so ϕ = π. The result is

ζ = eiϕ = eiπ = −1.

Of course, the issue is the fact that eiθ is multivalued. Indeed,

eiθ = ei(θ+2πk), k ∈ Z.

This means in order to find the two solutions to z2 = 1, we must find the two values of
ϕ ∈ [0, 2π) for which ei2ϕ = 1. The answer, as we discovered, is ϕ ∈ {0, π}.

Example 6.3. Find the three cube roots of 1; that is, determine all values of z ∈ C such
that z3 = 1.
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Solution. Suppose that ζ = eiϕ. We need to find the three values of ϕ ∈ [0, 2π) such that

ei3ϕ = 1.

If we write 1 = ei0, then the first value is ϕ1 = 0 since

ei3ϕ1 = ei0.

If we write 1 = ei2π, then the second value is ϕ2 = 2π/3 since

ei3ϕ2 = ei2π.

If we write 1 = ei4π, then the third value is ϕ3 = 4π/3 since

ei3ϕ3 = ei2π.

Thus, the three solutions are

ζ1 = 1, ζ2 = ei2π/3, ζ3 = ei4π/3.

Note that you might object since 4π/3 does not lie in the interval (−π, π] which means that
Arg(ζ3) = Arg(ei4π/3) does not equal 4π/3. Since Arg(ei4π/3) = −2π/3, you might prefer to
write

ζ3 = e−i2π/3

instead. You can also find this solution as follows. If we write 1 = e−i2π, then the third value
is ϕ3 = −2π/3 since

ei3ϕ3 = e−i2π.

It is important to stress that in cartesian coordinates there is no ambiguity. The three cube
roots of 1 are

ζ1 = 1, ζ2 = −1

2
+ i

√
3

2
, ζ3 = −1

2
− i
√

3

2
.

Exercise 6.4. Determine all values of z ∈ C such that z5 = 1.
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Lecture #7: Powers and Roots of Algebraic Equations

Example 7.1. Find all values of z ∈ C such that z4 = 1.

Solution. Suppose that ζ is a solution to the equation. We begin by noting that ζ4 = 1
implies |ζ|4 = 1 which in turn implies |ζ| = 1 so that ζ lies on the unit circle. Therefore, we
assume that the polar form of ζ is ζ = eiϕ and so we need to solve

ζ4 = ei4ϕ = ei0 = 1.

However, we know that
eiϕ = ei(ϕ+2kπ) for k ∈ Z.

Since we want ϕ ∈ [0, 2π), we conclude that

4ϕ ∈ {0, 2π, 4π, 6π} so that ϕ ∈ {0, π/2, π, 3π/2}.

Thus, there are four solutions to z4 = 1, namely

ζ1 = ei0 = 1, ζ2 = eiπ/2 = i, ζ3 = eiπ = −1, ζ4 = ei3π/2 = −i.

We can plot these solutions in the complex plane.

����

��
��
��
��

��
��
��
��

��
��
��
��

−1

−i

i

1

Figure 7.1: Geometric representation of solutions to z4 = 1.

Also note that ζ4
j = 1 for each j = 1, 2, 3, 4. Therefore, since multiplication of complex

variables of unit modulus corresponds to rotation, we can conclude that the four roots are
related to each other by a rotation of 2π/4 = π/2 radians.

We can now generalize the previous example.

Example 7.2. Find all values of z ∈ C such that zn = 1 where n is a positive integer.

Solution. Note that any solution will necessarily have modulus 1. Therefore, consider
ζ = eiϕ. There are n values of ϕ in [0, 2π) for which

ζn = einϕ = 1

holds.
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In fact, they satisfy
nϕ = 2kπ, k = 0, 1, . . . , n− 1

or, equivalently,

ϕ =
2kπ

n
, k = 0, 1, . . . , n− 1.

Thus, the n solutions are

ζ1 = ei0 = 1, ζ2 = ei2π/n, ζ3 = ei4π/n, . . . , ζn = ei2(n−1)π/n.

We call
{ζ1 = 1, ζ2, . . . , ζn}

the n roots of unity.
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ζ1 = 1

ζ2

ζn

ζ3

2π
n

Figure 7.2: Geometric representation of the n roots of unity.

We can represent the n roots of unity as n points equally spaces around the circle of radius
1. Note that ζ1 = 1, and each subsequent root is obtained by rotating the previous root by
2π/n radians. After n rotations, we are back to our starting point.

The Roots of Unity

We will now consider a different notation for the roots of unity. Let

ωn = ei2π/n.

Note that

ω0
n = 1, ω2

n = (ei2π/n)2 = ei4π/n, . . . , ωkn = (ei2π/n)k = ei2πk/n, . . .

and so the n roots of unity can be written as

{ω0
n = 1, ωn, ω

2
n, . . . , ω

n−1
n }.

The geometric interpretation to the roots of unity that we gave above is perhaps even more
clearly illustrated with this notation. The first root of unity is ω0

n = 1. The second root
of unity is ωn = ωn · 1 which represents rotation by 2π/n degrees from 1. The third root
of unity is ω2

n = ωn · ωn which represents rotation by 2π/n degrees from ei2π/n. In general,
subsequent roots of unity can be obtained from the previous root by rotation through 2π/n
radians.
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Proposition 7.3. If ωn = ei2π/n, then

1 + ωn + ω2
n + · · ·+ ωn−1

n = 0.

Proof. This follows immediately from Proposition 5.2. That is,

1 + ωn + ω2
n + · · ·+ ωn−1

n =
1− ωnn
1− ωn

= 0

since ωnn = (ei2π/n)n = ei2π = 1.

Example 7.4. Determine all complex values of (16)1/4.

Solution. We know that the fourth roots of unity are 1, −1, i, and −i. We know that
the fourth root of the positive real number |16| is 2. Thus, the possible fourth roots of the
complex variable 16 are

{2,−2, 2i,−2i}.
Observe that we can write

(16)1/4 = |16|1/411/4.

Here we are viewing (16)1/4 ∈ C, |16|1/4 ∈ R, and 11/4 ∈ C.

In fact, the idea of the previous example holds in general.

Example 7.5. Suppose that w ∈ C is given. Determine all values of z ∈ C such that
zn = w.

Solution. Suppose that ζ is one such solution so that ζn = w. If we write w = reiθ and
ζ = ρeiϕ, then we must have

ρneinϕ = reiθ.

Since both ρ and r are non-negative real numbers, we must have ρ = r1/n. Here we are
writing ρ for the unique positive real valued nth root of r. Moreover, since

ζ = r1/neiϕ so that |ζ| = r1/n

we see that the solutions lie on the circle of radius r1/n. Furthermore, we know that there
are n values of ϕ ∈ [0, 2π) for which

einϕ = eiθ,

namely
nϕ = θ + 2kπ, k = 0, 1, . . . , n− 1,

or, equivalently,

ϕ =
θ + 2kπ

n
, k = 0, 1, . . . , n− 1.

Thus, the n solutions to zn = w = reiθ are ζ1, . . . , ζn where

ζk = r1/nei(θ+2kπ)/n, k = 0, 1, . . . , n− 1.
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Lecture #11: Limits, Continuity, and Differentiability

Definition. Let f(z) be a function defined in some neighbourhood of z0, except possibly at
z0 itself. We say that f(z) converges to w0 as z converges to z0, written

lim
z→z0

f(z) = w0,

if for every ε > 0 there exists a δ > 0 such that |f(z)− w0| < ε whenever 0 < |z − z0| < δ.

Definition. We say that f(z) is continuous at z0 if

lim
z→z0

f(z) = f(z0).

Remark. This is the same definition as in calculus except that the condition 0 < |z−z0| < δ
allows z to approach z0 in any direction as shown in Figure 11.1. This makes limits much
more subtle with complex variables.
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Bδ(z0) = {z : |z − z0| < δ}

z0

Figure 11.1: z can approach z0 from any direction.

Definition. Let f(z) be defined in a neighbourhood of z0. The derivative of f(z) at z0 is

d

dz
f(z)

∣∣∣∣
z0

= f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

provided that the limit exists.

Remark. The limit must be independent of path ∆z → 0 in order for the derivative to
exist.

Example 11.1. Let f : C→ C be given by f(z) = z. Show that f(z) is differentiable at z0

for every z0 ∈ C.

Solution. Since

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆z→0

(z0 + ∆z)− (z0)

∆z
= lim

∆z→0

∆z

∆z
= 1

for all z0 ∈ C, we conclude that f is differentiable at z0 for every z0 ∈ C with f ′(z0) = 1.
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Example 11.2. Let f : C→ C be given by f(z) = z. Is f(z) differentiable at z0 ∈ C?

Solution. Observe that

f(z0 + ∆z)− f(z0)

∆z
=

(z0 + ∆z)− (z0)

∆z
=

∆z

∆z
,

and so the question is to determine what happens as ∆z → 0. In particular, is the value
independent of path? To see that it is not, let ∆z = ∆x+ i∆y so that

lim
∆z→0

∆z

∆z
= lim

∆x→0, ∆y→0

∆x+ i∆y

∆x+ i∆y
= lim

∆x→0, ∆y→0

∆x− i∆y
∆x+ i∆y

.

Consider approaching 0 along the positive real axis. This means that ∆y = 0 so that
∆z = ∆x and

∆z → 0 if and only if ∆x→ 0.

Therefore, we conclude

lim
∆x→0, ∆y→0

∆x− i∆y
∆x+ i∆y

= lim
∆x→0, ∆y=0

∆x− i∆y
∆x+ i∆y

= lim
∆x→0

∆x

∆x
= 1.

Now consider approaching 0 along the positive imaginary axis. This means that ∆x = 0 so
that ∆z = i∆y and

∆z → 0 if and only if ∆y → 0.

Therefore, we conclude

lim
∆x→0, ∆y→0

∆x− i∆y
∆x+ i∆y

= lim
∆x=0, ∆y→0

∆x− i∆y
∆x+ i∆y

= lim
∆y→0

−i∆y
i∆y

= −1.

Since the value of the limit is not independent of path, we conclude that f(z) = z is nowhere
differentiable!

Example 11.3. Let f : C→ C be given by f(z) = |z|2. Is f(z) differentiable at z0 ∈ C?

Solution. Observe that

f(z0 + ∆z)− f(z0)

∆z
=
|z0 + ∆z|2 − |z0|2

∆z
=

(z0 + ∆z)(z0 + ∆z)− z0z0

∆z

=
z0z0 + z0∆z + z0∆z + ∆z∆z − z0z0

∆z

= z0 + z0
∆z

∆z
+ ∆z

and so the question is to determine what happens as ∆z → 0. Consider

lim
∆z→0

(
z0 + z0

∆z

∆z
+ ∆z

)
. (∗)

We know that

lim
∆z→0

∆z

∆z
does not exist
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and so the middle term in (∗) does not exist except when z0 = 0. However, if z0 = 0, then

lim
∆z→0

f(0 + ∆z)− f(0)

∆z
= lim

∆z→0
∆z = 0.

This means that f(z) = |z|2 is differentiable at z0 = 0 with f ′(0) = 0, but is not differentiable
at any z0 ∈ C \ {0}.
Remark. The function f(z) = z is nowhere differentiable, and the function f(z) = |z|2
is differentiable only at 0. As we will see more formally later, functions that involve z are
typically not differentiable.

Definition. A function f(z) is analytic in some domain D if it is differentiable at each point
in D. (Recall that a domain is an open, connected set. In particular, D cannot be a single
point.)

Definition. A function f(z) is analytic at z0 if it is differentiable at z0 and if it is differen-
tiable at all z in some neighbourhood of z0.

Example 11.4. The function f(z) = z is analytic at 0 since it is differentiable at 0 and
is differentiable at all z in any neighbourhood of 0. (In fact, f(z) = z is analytic in C.)
The function f(z) = |z|2 is differentiable at 0, but it is not analytic at 0 since it is not
differentiable at any z 6= 0.

Remark. The usual properties of limits that we had in calculus for real functions also hold
for complex function. In particular, we can deduce the following results from their real
variable counterparts:

• d

dz
(f(z)g(z)) = f ′(z)g(z) + g′(z)f(z),

• d

dz

(
f(z)

g(z)

)
=
f ′(z)g(z)− g′(z)f(z)

g2(z)
,

• d

dz
(f ◦ g)(z) = f ′(g(z))g′(z),

• d

dz
(αf(z) + β) = αf ′(z) + β, for any α, β ∈ C.

Note. When answering the problems on Assignment #3, note that the only derivative results
we have proved are the following.

• If f(z) = z, then f ′(z) = 1.

• If f(z) = z, then f ′(z) does not exist for any z ∈ C.

• If f(z) = |z|2, then f ′(0) = 0 and f ′(z) does not exist for any z ∈ C \ {0}.

For any other complex function f(z), you need to use the definition of derivative to determine
f ′(z).
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Prof. Michael Kozdron

Lecture #12: Selected Review of Assignments #2 and #3

Example 12.1 (Assignment #2, Problem #10). Solve the equation (z+ 1)5 = z5 for z ∈ C.

Solution. Consider the function f(z) = (z+ 1)5− z5. If we expand (z+ 1)5 we see that the
leading term is z5. Hence, f(z) is a fourth degree polynomial. Thus, there are four complex
variables ζ1, ζ2, ζ3, ζ4 with f(ζj) = 0. Observe that (z + 1)5 = z5 is equivalent to

1 =
(z + 1)5

z5
=

(
z + 1

z

)5

=

(
1 +

1

z

)5

for all z ∈ C \ {0}. If we let w = 1 + z−1, then w5 = 1 implies that

w ∈ {1, ei2π/5, ei4π/5, ei6π/5, ei8π/5}

and so
1 + z−1 ∈ {1, ei2π/5, ei4π/5, ei6π/5, ei8π/5}.

Since z = 0 is clearly not a solution to (z + 1)5 = z5, we conclude that 1 + z−1 = 1 is not
a legitimate solution to (1 + z−1)5 = 1. (That is, 1 + z−1 = 1 implies z−1 = 0 which is
nonsensical.) Hence, 1 + z−1 ∈ {ei2π/5, ei4π/5, ei6π/5, ei8π/5} so that

ζ1 =
1

ei2π/5 − 1
, ζ2 =

1

ei4π/5 − 1
, ζ3 =

1

ei6π/5 − 1
, ζ4 =

1

ei8π/5 − 1
.

Example 12.2 (Assignment #2, Problem #3). Use de Moivre’s formula to prove that

sin(2θ) + · · ·+ sin(2nθ) =
sin(nθ) sin((n+ 1)θ)

sin(θ)

for 0 < θ < π.

Solution. Recall that if z 6= 1 ∈ C, then

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z .

Hence, if we take z = ei2θ with 0 < θ < π, then

1 + ei2θ + (ei2θ)2 + · · ·+ (ei2θ)n =
1− (ei2θ)n+1

1− ei2θ

so that de Moivre’s formula implies

1 + cos(2θ) + · · ·+ cos(2nθ) + i[sin(2θ) + · · ·+ sin(2nθ)] =
1− ei2(n+1)θ

1− ei2θ .
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We will write the right side of the previous equation as

1− ei2(n+1)θ

1− ei2θ =
1− ei2θ + ei2θ − ei2(n+1)θ

1− ei2θ = 1 +
ei2θ − ei2(n+1)θ

1− ei2θ

so that

cos(2θ) + · · ·+ cos(2nθ) + i[sin(2θ) + · · ·+ sin(2nθ)] =
ei2θ − ei2(n+1)θ

1− ei2θ .

Thus, we conclude that

sin(2θ) + · · ·+ sin(2nθ) = Im

[
ei2θ − ei2(n+1)θ

1− ei2θ
]
.

Multiplying and dividing by e−iθ implies

ei2θ − ei2(n+1)θ

1− ei2θ =
e−iθ

e−iθ
ei2θ − ei2(n+1)θ

1− ei2θ =
eiθ − ei(2n+1)θ

e−iθ − eiθ .

We now write

eiθ − ei(2n+1)θ = eiθ(1− ei2nθ) = eiθeinθ(e−inθ − einθ) = ei(n+1)θ(e−inθ − einθ)

and so
eiθ − ei(2n+1)θ

e−iθ − eiθ = ei(n+1)θ (e−inθ − einθ)
e−iθ − eiθ = ei(n+1)θ sin(nθ)

sin(θ)
.

Therefore,

Im

[
ei2θ − ei2(n+1)θ

1− ei2θ
]

= Im

[
ei(n+1)θ sin(nθ)

sin(θ)

]
=

sin(nθ)

sin(θ)
Im
[
ei(n+1)θ

]
=

sin(nθ) sin((n+ 1)θ)

sin(θ)

so that

sin(2θ) + · · ·+ sin(2nθ) =
sin(nθ) sin((n+ 1)θ)

sin(θ)

as required.

Example 12.3 (Assignment #3, Problem #4). Show that the Joukowski function defined
by

w = J(z) =
1

2

(
z +

1

z

)
maps the circle {|z| = r, r > 0, r 6= 1} onto the ellipse

u2(
1
2

(
r + 1

r

))2 +
v2(

1
2

(
r − 1

r

))2 = 1

which has foci at ±1.
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Solution 1. Consider the circle {|z| = r, r > 0, r 6= 1}. Suppose that we write z in polar
coordinates as z = reiθ and that we write w = J(z) as w = u+ iv. Hence,

u+ iv = w = J(z) =
1

2

(
z +

1

z

)
=

1

2

(
reiθ +

1

r
e−iθ

)
=

1

2

[
r cos θ + ir sin θ +

1

r
cos θ − i

r
sin θ

]
=

1

2

(
r +

1

r

)
cos θ +

i

2

(
r − 1

r

)
sin θ

which implies that

u =
1

2

(
r +

1

r

)
cos θ and v =

1

2

(
r − 1

r

)
sin θ.

If we then solve for cos θ and sin θ in the previous expressions, we obtain[
u

1
2

(
r + 1

r

)]2

+

[
v

1
2

(
r − 1

r

)]2

= cos2 θ + sin2 θ = 1.

In other words, J maps the circle {|z| = r, r > 0, r 6= 1} onto the ellipse

u2(
1
2

(
r + 1

r

))2 +
v2(

1
2

(
r − 1

r

))2 = 1.

Solution 2. If we write z in cartesian coordinates as z = x+ iy and w = J(z) as w = u+ iv,
then we obtain

2(u+ iv) = 2w = 2J(z) = z +
1

z
= x+ iy +

1

x+ iy
= x+ iy +

x− iy
x2 + y2

=

(
x+

x

x2 + y2

)
+ i

(
y − y

x2 + y2

)
which implies that

2u = x+
x

x2 + y2
and 2v = y − y

x2 + y2
.

We know that x2 + y2 = r2, and so we can write the previous expressions as

2u = x

(
1 +

1

r

)
and 2v = y

(
1− 1

r

)
.

Thus, if we solve the previous expressions for x and y, square them, and add them, we obtain

r2 = x2 + y2 =

[
2u

1 + 1
r

]2

+

[
2v

1− 1
r

]2

which, after some arithmetic, is equivalent to

u2(
1
2

(
r + 1

r

))2 +
v2(

1
2

(
r − 1

r

))2 = 1.
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Lecture #13: Analyticity and the Cauchy-Riemann Equations

Question. Suppose that f(z) = u(z) + iv(z). Under what conditions on u = u(z) = u(x, y)
and v = v(z) = v(x, y) is f(z) analytic?

Answer. We certainly need f to be differentiable at z0. This means that f is defined in
some neighbourhood of z0 and

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
(∗)

exists. (In particular, the value of the limit is independent of the path ∆z → 0.) Let
∆z = ∆x + i∆y. We know that (∗) exists if (i) ∆y = 0 and ∆x → 0, and (ii) ∆x = 0 and
∆y → 0. Consider first the case ∆y = 0. We have

f(z0 + ∆z)− f(z0)

∆z
=
f(z0 + ∆x)− f(z0)

∆x

=
f(x0 + ∆x+ iy0)− f(x0 + iy0)

∆x

=
u(x0 + ∆x, y0) + iv(x0 + ∆x, y0)− (u(x0, y0) + iv(x0, y0))

∆x

=
u(x0 + ∆x, y0)− u(x0, y0)

∆x
+ i

v(x0 + ∆x, y0)− v(x0, y0)

∆x

Now consider the case ∆x = 0. We have

f(z0 + ∆z)− f(z0)

∆z
=
f(z0 + i∆y)− f(z0)

i∆y

=
f(x0 + iy0 + i∆y)− f(x0 + iy0)

i∆y

=
u(x0, y0 + ∆y) + iv(x0, y0 + ∆y)− (u(x0, y0) + iv(x0, y0))

i∆y

=
v(x0, y0 + ∆y)− v(x0, y0)

∆y
− iu(x0, y0 + ∆y)− u(x0, y0)

∆y

Since both of these are expressions for f ′(z0) in the limit, we obtain by equating real and
imaginary parts that

lim
∆x→0

u(x0 + ∆x, y0)− u(x0, y0)

∆x
= lim

∆y→0

v(x0, y0 + ∆y)− v(x0, y0)

∆y

and

lim
∆x→0

v(x0 + ∆x, y0)− v(x0, y0)

∆x
= − lim

∆y→0

u(x0, y0 + ∆y)− u(x0, y0)

∆y
.
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Equivalently,

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

These are the celebrated Cauchy-Riemann equations.

Theorem 13.1. If f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is differentiable at z0, then the
Cauchy-Riemann equations are satisfied at z0 = x0 + iy0; that is, if f ′(z0) exists, then

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

This theorem is most useful, however, when considered in the contrapositive.

Corollary 13.2. Consider f(z) = u(z) + iv(z) = u(x, y) + iv(x, y). If the Cauchy-Riemann
equations are not satisfied by f at (x0, y0), then f is not differentiable at z0. In particular,
if f is not differentiable at z0, then f is not analytic at z0.

Example 13.3. Let f(z) = z = x− iy so that

u(x, y) = x and v(x, y) = −y.

We find

∂u

∂x
= 1,

∂v

∂y
= −1,

∂v

∂x
= 0,

∂u

∂y
= 0.

Since the Cauchy-Riemann equations are not satisfied for any z0, we conclude that f is
nowhere differentiable.

Example 13.4. Let f(z) = |z|2 = x2 + y2 so that

u(x, y) = x2 and v(x, y) = y2.

We find

∂u

∂x
(x0, y0) = 2x0,

∂v

∂y
(x0, y0) = 0,

∂v

∂x
(x0, y0) = 0,

∂u

∂y
(x0, y0) = 2y0.

The Cauchy-Riemann equations are only satisfied at z0 = (x0, y0) = (0, 0). Since the Cauchy-
Riemann equations are NOT satisfied at z0 6= 0, we conclude that f is not differentiable at
z0 ∈ C \ {0}. Hence, f is not analytic at 0. It is very important to stress that we CANNOT
use the Cauchy-Riemann equations to determine whether or not f ′(0) exists. (Using the
definition of derivative, we showed in Example 11.3 that f ′(0) = 0.)
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Exercise 13.5. Use the Cauchy-Riemann equations to show that f(z) = Im z is nowhere
differentiable.

Exercise 13.6. Use the Cauchy-Riemann equations to show that f(z) = Re z is nowhere
differentiable.

The key observation is that Theorem 13.1 gives us a necessary condition for differentiability,
namely if f is differentiable at z0, then f satisfies the Cauchy-Riemann equations at z0. It
does not, however, give us a sufficient condition for a function to be differentiable. That is,
it is possible for a function f = u + iv to satisfy the Cauchy-Riemann equations at z0, yet
not be differentiable at z0.

Exercise 13.7. Consider the function

f(z) = f(x+ iy) =


x4/3y5/3 + ix5/3y4/3

x2 + y2
, if z 6= 0,

0, if z = 0.

Show that the Cauchy-Riemann equations hold at z = 0, but that f is not differentiable at
z = 0. (Hint: Consider ∆z → 0 along (i) the real axis, and (ii) the line y = x.)

Theorem 13.8. Let f(z) be defined in some neighbourhood D of the point z0 = x0 + iy0. If
the Cauchy-Riemann equations are satisfied at z0, namely

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0),

and if
∂u

∂x
,

∂u

∂y
,

∂v

∂x
,

∂v

∂y

all exist in D and are continuous at z0, then f is differentiable at z0.

Example 13.9. Suppose that f = u + iv is analytic in a domain D. Show that u satisfies
Laplace’s equation in D (assuming that uxx, uyy, vxy, vyx exist in D and are sufficiently
smooth so that vxy = vyx).

Solution. Since f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is analytic in D, we know the
Cauchy-Riemann equations are satisfied at any z0 = x0 + iy0 ∈ D. This means that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

Taking the second partials of u with respect to x and y implies that

∂2u

∂x2
(x0, y0) =

∂2v

∂x∂y
(x0, y0) and

∂2v

∂y∂x
(x0, y0) = −∂

2u

∂y2
(x0, y0)

and so
∂2u

∂x2
(x0, y0) +

∂2u

∂y2
(x0, y0) =

∂2v

∂x∂y
(x0, y0)− ∂2v

∂y∂x
(x0, y0) = 0.

Definition. An entire function is one that is analytic in the entire complex plane.

Example 13.10. Show that the function f(z) = ez = exeiy = ex[cos y + i sin y] is entire.
Also show that f(C) = C \ {0}.
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Solution. If f(z) = ez = exeiy = ex[cos y + i sin y], then

∂u

∂x
(x0, y0) = ex0 cos y0,

∂v

∂x
(x0, y0) = ex0 sin y0,

and
∂v

∂y
(x0, y0) = ex0 cos y0,

∂u

∂y
(x0, y0) = −ex0 sin y0.

Observe that
∂u

∂x
(z0),

∂u

∂y
(z0),

∂v

∂x
(z0),

∂v

∂y
(z0)

exist for all z0 ∈ C and are clearly continuous at z0. Since the Cauchy-Riemann equations are
also satisfied for every z0 ∈ C, we conclude from Theorem 13.8 that f(z) = ez is differentiable
at every z0 ∈ C. Hence, ez is necessarily analytic at every z0 ∈ C so that ez is entire. Observe
that if z ∈ C, then ez 6= 0. This follows from the fact that ex > 0 for every x ∈ R and
cos y + i sin y 6= 0 for every y ∈ R (i.e., cos y and sin y are never simultaneously equal to 0).
To finish the proof that f(C) = C \ {0}, suppose that w ∈ C \ {0} and observe that

elog |w|(cos(Argw) + i sin(Argw)) = w.

In other words, if z = log |w|+ iArgw, then

ez = elog |w|+iArgw = |w|eiArg(w) = w.

Since cos y and sin y are periodic with period 2π, we conclude that

ez = ez+2πi.

That is, ez is periodic with period 2πi. Since Arg(w) ∈ (−π, π], we therefore take the
fundamental region for ez to be

{−π < Im z ≤ π}
as shown in Figure 13.1.
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Figure 13.1: The fundamental region for ez.
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Lecture #14: Harmonicity and the Cauchy-Riemann Equations

Suppose that f(z) = u(z) + iv(z) is analytic in a domain D so that u and v satisfy the
Cauchy-Riemann equations in D, namely

ux(z0) = vy(z0) and uy(z0) = −vx(z0)

for every z0 = x0 + iy0 ∈ D. We know from Example 13.9 that if uxx, uyy, vxy, vyx exist in
D and are sufficiently smooth so that vxy = vyx, then u satisfies Laplace’s equation in D,
namely

∂2u

∂x2
(x0, y0) +

∂2u

∂y2
(x0, y0) = 0

for every z0 ∈ D.

Definition. Suppose that D ⊆ C is a domain. We say that a function u : D → R is
harmonic if each of uxx, uyy, uxy, and uyx is continuous in D and if u satisfies Laplace’s
equation in D, namely

uxx(x0, y0) + uyy(x0, y0) = 0

for every z0 = x0 + iy0 ∈ D.

Example 14.1. Suppose that u : C→ R is given by u(z) = u(x, y) = x3 − 3xy2 + y. Verify
that u is harmonic in C, and then find an analytic function f : C→ C with Re f(z) = u(z).

Solution. To show that u is harmonic in C, we need to show (i) uxx, uyy, uxy, and uyx are
continuous, and (ii) uxx + uyy = 0. That is,

ux = 3x2 − 3y2 so that uxx = 6x and uyx = −6y

and
uy = −6xy + 1 so that uyy = −6x and uxy = −6y.

Clearly, uxx, uyy, uxy, and uyx are continuous and

uxx + uyy = 6x− 6x = 0

so that u is, in fact, harmonic in C. To find an analytic function f with Re f(z) = u(z)
means that we must find v(z) such that f(z) = u(z) + iv(z) is analytic in C. Note that v(z)
is called a harmonic conjugate of u(z). (As we will see shortly, v(z) is not unique.) Since f is
assumed to be analytic, we know that u and v must satisfy the Cauchy-Riemann equations.
That is,

ux = vy implies vy = 3x2 − 3y2

and
uy = −vx implies vx = 6xy − 1.

14–1



Integrating vy implies
v(x, y) = 3x2y − 6y + C1(x)

and integrating vx implies that

v(x, y) = 3x2y − x+ C2(y).

By comparing these two expressions for v(x, y), we see that v(x, y) must be of the form

v(x, y) = 3x2y − 6y − x+ C

where C is an arbitrary real constant. Since the problem asks us to find one analytic function
f with Re f(z) = u(z), the one we’ll choose is

f(z) = f(x, y) = u(x, y) + iv(x, y) = x3 − 3xy2 + y + i(3x2y − 6y − x+ 312).

It is worth noting that we can write f(z) as a function of z as follows:

f(z) = z3 − iz + 312i.

Remark. Assuming appropriate smoothness, we have shown that the real part of every
analytic function f is harmonic. The converse, however, is not true. That is, not every
smooth harmonic function u : D → R is necessarily the real part of some analytic function.
As an example, consider u(z) = log |z| for z ∈ D = {0 < |z| < 1}. It is not hard to show
that u is harmonic in D. However, it can also be shown that u does not have a harmonic
conjugate in D. Compare this to Problem #8 on Assignment #4. The function u(z) = log |z|
for z ∈ D = {Re z > 0} is harmonic in D and does have a harmonic conjugate in D.

Analytic Properties of Elementary Functions

Recall from Lecture #13 that we set out to determine when a function is differentiable. One
consequence of our calculations was the following. We showed that if f was differentiable
at z0, then f satisfied the Cauchy-Riemann equations at z0. The way we derived this result
was to compute f ′(z0) in two ways and then equate real and imaginary parts. If we step
back, however, we can view our computations as a way of calculating f ′(z0).

Theorem 14.2. Consider the function f(z) = u(z) + iv(z) defined in some neighbourhood
of z0. If f is differentiable at z0 = x0 + iy0, then

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

and

f ′(z0) =
∂v

∂y
(x0, y0)− i∂u

∂y
(x0, y0).

Remark. It is important to stress that we must still know a priori that f is differentiable
at z0 in order to conclude that its derivative is given by either of these formulas. The most
common way of doing this is to use Theorem 13.8.
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Example 14.3. Prove that if f(z) = ez = ex[cos y + i sin y], then f ′(z) = ez.

Solution. We know from Example 13.10 that ez is entire. Therefore, we can apply Theo-
rem 14.2 to conclude

f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) = ex0 cos y0 + iex0 sin y0 = ez0 .

Recall that we can write the real-valued functions sin θ and cos θ as

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ
2i

.

This motivates the following definition.

Definition. The complex-valued functions cos z and sin z are defined to be

cos z =
eiz + e−iz

2
and sin z =

eiz − e−iz
2i

.

We now make a couple of important observations.

• The function ez is periodic with period 2πi and the function eiz is periodic with period
2π.

• Since eiz and e−iz are both entire functions, the functions cos z and sin z are also entire.

• sin(z + 2πk) = sin z and cos(z + 2πk) = cos z for any integer k. This means that the
fundamental region for cos z and sin z is {0 ≤ Re z < 2π}; see Figure 14.1.
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Figure 14.1: The fundamental region for cos z and sin z.

Example 14.4. Prove that

d

dz
sin z = cos z and

d

dz
cos z = − sin z.

Solution. We find

d

dz
sin z =

d

dz

(
eiz − e−iz

2i

)
=
ieiz + ie−iz

2i
=
eiz + e−iz

2
= cos z.

and
d

dz
cos z =

d

dz

(
eiz + e−iz

2

)
=
ieiz − ie−iz

2
= −e

iz − e−iz
2i

= − sin z.
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Lecture #15: Analytic Properties of Elementary Functions

Recall that we have defined the complex-valued functions ez, cos z, and sin z. The other
complex-valued trigonometric functions are defined in the same way as their real counter-
parts. That is,

• tan z =
sin z

cos z
,

• sec z =
1

cos z
,

• csc z =
1

sin z
, and

• cot z =
1

tan z
=

cos z

sin z
.

Note that cot z and csc z are analytic except at the zeroes of sin z, namely at z = kπ,
k ∈ Z. Also note that tan z and sec z are analytic except at the zeroes of cos z, namely at
z = π/2 + kπ, k ∈ Z.

Exercise 15.1. Show that the following identities hold for cos z and sin z:

• sin(z + 2π) = sin z, cos(z + 2π) = cos z,

• sin(−z) = − sin z, cos(−z) = cos z,

• sin2 z + cos2 z = 1,

• sin(z1 ± z2) = sin z1 cos z2 ± sin z2 cos z1,

• cos(z1 ± z2) = cos z1 cos z2 ∓ sin z2 sin z1,

• sin(2z) = 2 sin z cos z, cos(2z) = cos2 z − sin2 z.

In fact, we can also show that the differentiation formulas that hold for real-valued trigono-
metric functions also hold for the complex-valued ones; that is,

• d

dz
tan z = sec2 z,

• d

dz
cot z = − csc2 z,

• d

dz
sec z = sec z tan z, and

• d

dz
csc z = − csc z cot z.

Exercise 15.2. Verify the previous differentiation formulas hold.
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We are now about to define the complex-valued logarithm function. Recall that for real
variables, we can define the (natural) logarithm of x 6= 0, written as log x, to be that unique
number satisfying elog x = x. Moreover, we also know that log(ex) = x so that the functions
f(x) = ex and g(x) = log x are inverses.

Example 15.3. Solve ex = π/4 for x ∈ R.

Solution. We can use logarithms to solve this problem. That is, ex = π/4 implies x =
log(ex) = log(π/4).

Remark. To solve the previous problem we used a key fact about real-valued logarithms,
namely

ex1 = ex2 if and only if x1 = x2,

or, equivalently,
log x1 = log x2 if and only if x1 = x2.

We have already discovered that the function ez is 2πi periodic, namely ez = ez+2πi, so that
we cannot simply define the complex-valued logarithm to be the inverse of ez.

Example 15.4. Solve ez = (1 + i)/
√

2 for z ∈ C.

Solution. We write (1 + i)/
√

2 in polar coordinates as (1 + i)/
√

2 = eiπ/4 so that we need
to solve

ez = eiπ/4

for z. Hence, one solution is z = iπ/4. But this is not the only solution. By periodicity, we
know ez = ez+2πki, k ∈ Z. Hence,

ez+2πki = eiπ/4

implies
z = (π/4 + 2πk)i, k ∈ Z.

Let w ∈ C 6= 0. We know that there are infinitely many values of z ∈ C such that ez = w;
see Figure 15.1.
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Figure 15.1: The image of C under the mapping ez.

However, there is a unique value of z in the fundamental region {−π < Im z ≤ π} with
ez = w. This is what we will use to define the logarithm of w; more precisely, this will be
the principal value of the logarithm.
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Definition. Suppose that w ∈ C \ {0}. We define the principal value of the logarithm of w,
denoted Logw, to be

Logw = log |w|+ iArg(w).

Remark. We are writing Log with a capital L to stress that it is the principal value of the
complex-valued logarithm. Note that log x for x ∈ R denotes the usual real-valued natural
logarithm.

Remark. The principal value of the logarithm of w 6= 0 can also be defined as the unique
value of z with −π < Im z ≤ π such that ez = w.

Example 15.5. Compute Log(1 + i).

Solution. Since |1 + i| =
√

2 and Arg(1 + i) = π/4, we find

Log(1 + i) = log
√

2 + iπ/4 =
1

2
log 2 + i

π

4
.

Definition. Let w ∈ C \ {0}. The complex-valued logarithm of w is the multiple-valued
function given by

logw = log |w|+ i arg(w).

Since arg(w) = {Arg(w) + 2πk, k ∈ Z}, we can also write

logw = {log |w|+ iArg(w) + 2πki, k ∈ Z}.

Recall from Assignment #1 that arg(w1w2) = arg(w1) + arg(w2) for all w1, w2 ∈ C, but that
Arg(w1w2) 6= Arg(w1) + Arg(w2) for all w1, w2 ∈ C. This translates into similar statements
for the complex-valued logarithm and the principal value of the logarithm.

Exercise 15.6. Show that log(w1w2) = logw1 + logw2 for all w1, w2 ∈ C \ {0}. Find values
w1, w2 ∈ C \ {0} such that Log(w1w2) 6= Logw1 + Logw2.

Proposition 15.7. The function f : C \ {0} → C given by f(z) = Log z is continuous at
all z except those along the negative real axis.

Proof. Since z 7→ log |z| is clearly continuous for all z ∈ C \ {0} and since Log z = log |z| +
iArg(z), the result follows from the fact (Assignment #3) that z 7→ Arg(z) is discontinuous
at each point on the nonpositive real axis.

Recall that if f : (0,∞)→ R is given by f(x) = log x, then f ′(x) = 1/x. The same type of
formula holds for the principal value of the logarithm, but must be stated very carefully.

Theorem 15.8. The function z 7→ Log z is analytic in the domain D = C \D∗ where

D∗ = {z ∈ C : Re(z) ≤ 0 and Im(z) = 0}

and satisfies
d

dz
Log z =

1

z
for z ∈ D.
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Proof. Let w = Log z. We must show that

lim
z→z0

w − w0

z − z0

exists and equals 1/z0 for every z0 ∈ D. However, we know (by definition of Log z) that
z = ew. We also know from from Example 13.10 and Example 14.3 that f(w) = ew is entire
with f ′(w) = ew. In other words,

d

dw
f(w)

∣∣∣∣
w=w0

=
d

dw
ew
∣∣∣∣
w=w0

=
dz

dw

∣∣∣∣
w=w0

= lim
w→w0

z − z0

w − w0

= ew0 = z0. (∗)

The next step is to observe that by continuity (Proposition 15.7), w → w0 as z → z0. Hence,

lim
z→z0

w − w0

z − z0

= lim
w→w0

w − w0

z − z0

. (∗∗)

However, compare the right side of (∗∗) with (∗) to conclude

d

dz
Log z

∣∣∣∣
z=z0

= lim
z→z0

w − w0

z − z0

= lim
w→w0

w − w0

z − z0

= lim
w→w0

1
z−z0
w−w0

=
1

z0

for every z0 ∈ D.

15–4



Mathematics 312 (Fall 2012) October 12, 2012
Prof. Michael Kozdron

Lecture #16: Applications of the Cauchy-Riemann Equations

Example 16.1. Prove that if r and θ are polar coordinates, then the functions rn cos(nθ)
and rn sin(nθ) (where n is a positive integer) are harmonic as functions of x and y.

Solution. Consider rn cos(nθ) and rn sin(nθ) where n is a positive integer. The key observa-
tion is that de Moivre’s formula tells us these are the real and imaginary parts, respectively,
of (r cos θ + ir sin θ)n; that is, if z = x+ iy = reiθ, then

zn = rneinθ = rn cos(nθ) + irn sin(nθ).

Hence, let u = rn cos(nθ) and v = rn sin(nθ). In order to show that u and v are harmonic
as functions of x and y, we can use Example 13.9 which tells us that the real part of an an-
alytic function is harmonic (assuming the partial derivatives are smooth enough). However,
Example 13.9 says nothing about the imaginary part of an analytic function. Thus, the first
step is to prove the following.

Proposition 16.2. If f = u + iv is analytic in a domain D, then v satisfies Laplace’s
equation in D (assuming that vxx, vyy, uxy, uyx exist in D and are sufficiently smooth so
that uxy = uyx).

Proof. Since f(z) = u(z) + iv(z) = u(x, y) + iv(x, y) is analytic in D, we know the Cauchy-
Riemann equations are satisfied at any z0 = x0 + iy0 ∈ D. This means that

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂v

∂x
(x0, y0) = −∂u

∂y
(x0, y0).

Taking the second partials of v with respect to x and y implies that

∂2v

∂y2
(x0, y0) =

∂2u

∂y∂x
(x0, y0) and

∂2v

∂x2
(x0, y0) = − ∂2u

∂x∂y
(x0, y0)

and so
∂2v

∂x2
(x0, y0) +

∂2v

∂y2
(x0, y0) = − ∂2u

∂x∂y
(x0, y0) +

∂2u

∂y∂x
(x0, y0) = 0

which completes the proof.

Therefore, we see that if we can show that f(z) = zn is analytic, we can conclude for free
from Example 13.9 and this proposition that u = rn cos(nθ) and v = rn sin(nθ) are harmonic
as functions of x and y.

In order to prove that f(z) = zn is analytic, however, we need to show that f ′(z0) exists for
all z0 ∈ C. Consider

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆z→0

(z0 + ∆z)n − zn0
∆z

.
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By the binomial theorem,

(z0 + ∆z)n =
n∑
j=0

(
n

j

)
zn−j0 (∆z)j = zn0 + nzn−1

0 ∆z +
n∑
j=2

(
n

j

)
zn−j0 (∆z)j,

and so
(z0 + ∆z)n − zn0

∆z
= nzn−1

0 +
n∑
j=2

(
n

j

)
zn−j0 (∆z)j−1.

Since j − 1 ≥ 0 for 2 ≤ j ≤ n, we immediately deduce that

lim
∆z→0

(z0 + ∆z)n − zn0
∆z

= lim
∆z→0

[
nzn−1

0 +
n∑
j=2

(
n

j

)
zn−j0 (∆z)j−1

]
= nzn−1

0

proving f(z) = zn is entire with f ′(z0) = nzn−1
0 for all z0 ∈ C. In particular, u = Re(zn) =

rn cos(nθ) and v = Im(zn) = rn sin(nθ) are both harmonic as functions of x and y.

The Cauchy-Riemann Equations and Laplace’s Equation in Polar Coordinates

An equivalent way to solve Example 16.1 is to compute uxx + uyy and vxx + vyy directly for
both u = rn cos(nθ) and v = rn sin(nθ). The difficulty with this approach is that u and v, as
written, are functions of r and θ, but the partials that we wish to compute are with respect
to x and y. Therefore, we must use the multivariable chain rule to determine ur, uθ, vr, vθ
in terms of ux, uy, vx, vy. That is, we will introduce a change of variables

U(r, θ) = u(x, y) and V (r, θ) = v(x, y)

with x = r cos θ and y = r sin θ. Observe that r2 = x2 + y2 so that 2rrx = 2x which implies

rx =
x

r
=
r cos θ

r
= cos θ.

Moreover, tan θ = y/x so that θx = sec2 θ = −y/x2 which implies

θx = − y

x2 sec2 θ
= −y cos2 θ

x2
= −r sin θ cos2 θ

r2 sin2 θ
= −sin θ

r
.

Similarly,

ry = sin θ and θy =
cos θ

r
.

By the chain rule, we now find

ux = Urrx+Uθθx = (cos θ)Ur +(−r−1 sin θ)Uθ, uy = Urry +Uθθy = (sin θ)Ur +(r−1 cos θ)Uθ,

and

vx = Vrrx + Vθθx = (cos θ)Vr + (−r−1 sin θ)Vθ, vy = Vrry + Vθθy = (sin θ)Vr + (r−1 cos θ)Vθ.
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If we now assume that f(z) = u(z) + iv(z) = U(r, θ) + iV (r, θ) is differentiable at z0 = r0e
iθ0

so that the Cauchy-Riemann equations are satisfied at z0, then

ux(z0) = vy(z0) and uy(z0) = −vx(z0).

This implies

(cos θ0)Ur(r0, θ0)− (r−1
0 sin θ0)Uθ(r0, θ0) = (sin θ0)Vr(r0, θ0) + (r−1

0 cos θ0)Vθ(r0, θ0) (∗)
and

(sin θ0)Ur(r0, θ0) + (r−1
0 cos θ0)Uθ(r0, θ0) = −(cos θ0)Vr(r0, θ0) + (r−1

0 sin θ0)Vθ(r0, θ0). (∗∗)
Simplifying (∗) and (∗∗) yields

(Ur(r0, θ0)− r−1
0 Vθ(r0, θ0)) cos θ0 − (Vr(r0, θ0) + r−1

0 Uθ(r0, θ0)) sin θ0 = 0 (†)
and

(Vr(r0, θ0) + r−1
0 Uθ(r0, θ0)) cos θ0 + (Ur(r0, θ0)− r−1

0 Vθ(r0, θ0)) sin θ0 = 0. (‡)
If we then multiple (†) by cos θ0 and (‡) by sin θ0, and then add, we obtain

(Ur(r0, θ0)− r−1
0 Vθ(r0, θ0))(cos2 θ0 + sin2 θ0) = 0

which implies Ur(r0, θ0) = r−1
0 Vθ(r0, θ0). On the other hand, if we then multiple (†) by

− sin θ0 and (‡) by cos θ0, and then add, we obtain

(Vr(r0, θ0) + r−1
0 Uθ(r0, θ0))(cos2 θ0 + sin2 θ0) = 0

which implies r−1
0 Uθ(r0, θ0) = −Vr(r0, θ0).

Theorem 16.3. Let z = reiθ. If f(reiθ) = U(r, θ) + iV (r, θ) is differentiable at z0 = r0e
iθ0,

then the Cauchy-Riemann equations in polar coordinates are satisfied at z0; that is,

∂U

∂r
(r0, θ0) =

1

r0

∂V

∂θ
(r0, θ0) and

1

r0

∂U

∂θ
(r0, θ0) = −∂V

∂r
(r0, θ0).

Summary. The Cauchy-Riemann equations in polar coordinates can be remembered as

Ur =
1

r
Vθ and

1

r
Uθ = −Vr.

Example 16.4. Suppose that U(r, θ) = rn cos(nθ) and V (r, θ) = rn sin(nθ). We find

Ur = nrn−1 cos(nθ)

Vθ = nrn cos(nθ)

and

Uθ = −nrn sin(nθ)

Vr = nrn−1 sin(nθ)

so that Ur = r−1Vθ and r−1Uθ = −Vr. Hence, U and V satisfy the Cauchy-Riemann equations
in polar coordinates.
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We can now use the Cauchy-Riemann equations to derive Laplace’s equation in polar coor-
dinates. (Assume that all second partials exist and are sufficiently smooth so that the mixed
partials are equal.) That is, we know

ux = vy implies rUr = Vθ and uy = −vx implies Uθ = −rVr
and so taking derivatives with respect to x of the first equation and derivatives with respect
to y of the second equation implies

0 = (ux − vy)x + (uy + vx)y = (rUr − Vθ)x + (Uθ + rVr)y.

Now, using the chain rule, we find

(rUr − Vθ)x = rxUr + r(Urrrx + Uθrθx)− (Vθθθx + Vrθrx)

and
(Uθ + rVr)y = (Uθθθy + Urθry) + ryVr + r(Vrrry + Vθrθy).

Adding the previous two terms, using the equality of the mixed partials, and simplifying
implies

rxUr + rrxUrr + (rθx + ry)Uθr + θyUθθ = −ryVr − rryVrr − (rθy − rx)Vrθ + θxVθθ. (∗)

The next step is to note that

rθx + ry = r · −sin θ

r
+ sin θ = 0 and rθy − rx = r · cos θ

r
− cos θ = 0.

so that (∗) becomes

rxUr + rrxUrr + θyUθθ = −ryVr − rryVrr + θxVθθ.

Substituting in rx, θx, ry, θy, we conclude

cos θ

[
Ur + rUrr +

1

r
Uθθ

]
= − sin θ

[
Vr + rVrr +

1

r
Vθθ

]
. (†)

If, instead, at the beginning of the derivation we had taken derivatives with respect to y of
the first equation and derivatives with respect to x of the second equation, then we would
have found

cos θ

[
Vr + rVrr +

1

r
Vθθ

]
= − sin θ

[
Ur + rUrr +

1

r
Uθθ

]
. (‡)

We now multiple (†) by cos θ, multiply (‡) by sin θ, and add, then we conclude

(cos2 θ + sin2 θ)

[
Ur + rUrr +

1

r
Uθθ

]
= 0

and so we finally arrive at Laplace’s equation in polar coordinates

Urr +
1

r
Ur +

1

r2
Uθθ = 0.
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Note that we can also conclude immediately that V satisfies Laplace’s equation in polar
coordinates as well,

Vrr +
1

r
Vr +

1

r2
Vθθ = 0.

Example 16.5. Suppose that U(r, θ) = rn cos(nθ). We can now show directly that U is
harmonic. That is,

Ur = nrn−1 cos(nθ), Urr = n(n− 1)rn−2 cos(nθ), Uθ = −nrn sin(nθ), Uθθ = −n2rn cos(nθ)

so that

Urr +
1

r
Ur +

1

r2
Uθθ = n(n− 1)rn−2 cos(nθ) +

1

r
· nrn−1 cos(nθ) +

1

r2
· −n2rn cos(nθ)

= rn−2 cos(nθ)[n(n− 1) + n− n2]

= 0
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Lecture #17: Contour Integration

A contour integral is just a two-dimensional line integral (also known as a path integral).

A curve in the complex plane will be denoted by z = z(t), a ≤ t ≤ b. In other words, the
function z : R→ C given by t 7→ z(t), a ≤ t ≤ b, describes a curve in C.

A smooth curve z = z(t) is a curve such that

(i) z(t) has a continuous derivative,

(ii) z′(t) 6= 0 for all t ∈ [a, b],

(iii) z(t) is a one-to-one function.

Example 17.1. In Figure 17.1 below are examples of a smooth curve (left) and a non-smooth
curve (right).
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z(a)

z(b)

z = z(t), a ≤ t ≤ b

�� ��

Figure 17.1: Figure for Example 17.1. The curve on the left is smooth, whereas the curve
on the right is not smooth.

Example 17.2. Parametrize C1, the line segment going from 1 to 2 + i in C as shown in
Figure 17.2 below.

����

����

��
��
��
��

��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

2 + i

C1

Figure 17.2: Figure for Example 17.2 and Example 17.4.

Solution. Let x(t) = 1 + t, 0 ≤ t ≤ 1, and let y(t) = t, 0 ≤ t ≤ 1, so that

z(t) = x(t) + iy(t) = 1 + t+ it = 1 + (1 + i)t

for 0 ≤ t ≤ 1.
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Definition. A contour is a finite sequence of concatenated smooth curves z = z(t) with a
specified direction.

Example 17.3. Figure 17.3 below shows an example of a contour. Note that this particular
contour is the concatenation of two smooth curves.

�� ��

��

���
���
���
���

���
���
���
��� ����

����
����
����
����
����

����
����
����
����
����
����

z(a) z(b)

Figure 17.3: Figure for Example 17.3; an example of a contour.

Let C be a contour and consider

I =

∫
C

f(z) dz

which is the contour integral of the function f(z) along the contour C. That is, we integrate
f(z) along C in C. Let z = z(t), a ≤ t ≤ b, be a smooth parametrization of C. We define

I =

∫
C

f(z) dz

to equal

I =

∫ b

a

f(z(t)) · z′(t) dt.

Note that this definition requires

z′(t) =
dz(t)

dt
to exist.

Example 17.4. Compute

I1 =

∫
C1

z2 dz

where C1 is the line segment going from 1 to 2 + i in C as shown in Figure 17.2 above.

Solution. We know from Example 17.1 that C1 is parametrized by z(t) = 1 + (1 + i)t,
0 ≤ t ≤ 1. Note that z(0) = 1 and z(1) = 2 + i. Now

z(t)2 = [1 + (1 + i)t]2 = 1 + 2(1 + i)t+ (1 + i)2t2 and z′(t) = 1 + i

so that ∫
C1

z2 dz =

∫ 1

0

z(t)2 · z′(t) dt = (1 + i)

∫ 1

0

1 + 2(1 + i)t+ (1 + i)2t2 dt

=

[
(1 + i)t+ (1 + i)2t2 +

(1 + i)3

3
t3
]1

0

= (1 + i) + (1 + i)2 +
(1 + i)3

3

=
1

3
+

11

3
i.
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Example 17.5. Compute

I23 =

∫
C23

z2 dz

where C2 is the line segment going from 1 to 2 along the real axis, C3 is the line segment
going from 2 to 2+i parallel to the imaginary axis, and C23 = C2⊕C3 as shown in Figure 17.4
below.
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2 + i

C3C23 = C2 ⊕ C3

2C2

Figure 17.4: Figure for Example 17.5.

Solution. We can parametrize C2 as follows. Let x(t) = 1 + t, 0 ≤ t ≤ 1, and let y(t) = 0,
0 ≤ t ≤ 1, so that

z(t) = x(t) + iy(t) = 1 + t

for 0 ≤ t ≤ 1. We can parametrize C3 as follows. Let x(t) = 2, 0 ≤ t ≤ 1, and let y(t) = t,
0 ≤ t ≤ 1, so that z(t) = 2 + it, 0 ≤ t ≤ 1. Note, though, that we want to concatenate C2

and C3. Therefore, we will reparametrize C3 by z(t) = 2 + i(t − 1) = 2 − i + it, 1 ≤ t ≤ 2,
so that C23 = C2 ⊕ C3 is parametrized by

z(t) =

{
1 + t, 0 ≤ t ≤ 1,

2− i+ it, 1 ≤ t ≤ 2.

Now, ∫
C23

z2 dz =

∫ 2

0

z(t)2 · z′(t) dt =

∫ 1

0

z(t)2 · z′(t) dt+

∫ 2

1

z(t)2 · z′(t) dt

=

∫ 1

0

(1 + t)2 · 1 dt+

∫ 2

1

(2− i+ it)2 · i dt

=
(1 + t)3

3

∣∣∣∣1
0

+
(2− i+ it)3

3

∣∣∣∣2
1

=
8

3
− 1

3
+

(2 + i)3

3
− 8

3

=
(2 + i)3

3
− 1

3

=
1

3
+

11

3
i.
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Observe that our answers from Examples 17.4 and 17.5 are the same; that is,

I1 = I23 =
1

3
+

11

3
i.

Is this a coincidence? In other words, we have taken two distinct contours connecting the
same beginning and ending points, and found that the answer to both contour integrals is
the same. Suppose we take more complicated contours connecting the same same beginning
and ending points. Will we get the same value for any contour integral?

Example 17.6. Compute

I1 =

∫
C1

z dz

if C1 = {eit, 0 ≤ t ≤ π} is that part of the upper half of the unit circle going from 1 to −1.

Solution. If z(t) = eit, 0 ≤ t ≤ π, then z′(t) = ieit, and so∫
C1

z dz =

∫ π

0

z(t) · z′(t) dt =

∫ π

0

e−it · ieit dt = i

∫ π

0

dt = iπ.

Example 17.7. Compute

I2 =

∫
C2

z dz

where C2 = {e−it, 0 ≤ t ≤ π} is that part of the lower half of the unit circle going from 1 to
−1.

Solution. If z(t) = e−it, 0 ≤ t ≤ π, then z′(t) = −ieit, and so∫
C2

z dz =

∫ π

0

z(t) · z′(t) dt =

∫ π

0

eit · −ie−it dt = −i
∫ π

0

dt = −iπ.

Note that the answers to the previous two examples are different; that is, even though the
contours C1 and C2 start and end at the same points, I1 6= I2. What is the difference between
this pair of examples and the previous pair of examples?

Theorem 17.8 (Fundamental Theorem of Calculus for Contour Integrals). Suppose that D
is a domain. If f(z) is continuous in D and has an antiderivative F (z) throughout D (i.e.,
F (z) is analytic in D with F ′(z) = f(z) for every z ∈ D), then∫

C

f(z) dz = F (z(b))− F (z(a))

for any contour C lying entirely in D.

Proof. Suppose that C lies entirely in D and is parametrized by z = z(t), a ≤ t ≤ b. From
the definition of contour integral, we have∫

C

f(z) dz =

∫ b

a

f(z(t)) · z′(t) dt

17–4



and note that the assumption that f(z) is continuous means that f(z(t)) · z′(t) is Riemann
integrable on [a, b]. The assumption that f has an antiderivative F means that

d

dt
F (z(t)) = F ′(z(t)) · z′(t) = f(z(t)) · z′(t).

Therefore,∫
C

f(z) dz =

∫ b

a

f(z(t)) · z′(t) dt =

∫ b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a))

by the usual Fundamental Theorem of Calculus.

Example 17.9. Compute ∫
C

z2 dz

where C is any contour connecting 1 and 2 + i.

Solution. Observe that f(z) = z2 is continuous in C and F (z) = z3/3 is entire with
F ′(z) = f(z). Therefore, if C is any contour with z(a) = 1 and z(b) = 2 + i, then the
Fundamental Theorem of Calculus for Contour Integrals implies∫

C

z2 dz =
z3

3

∣∣∣∣
z=2+i

− z3

3

∣∣∣∣
z=1

=
(2 + i)3

3
− 1

3
=

1

3
+

11

3
i.

Remark. This explains why the answers to Examples 17.4 and 17.5 are the same. Note that
the function from Examples 17.6 and 17.7, namely z̄, does not have an antiderivative. This
is why the Fundamental Theorem of Calculus for Contour Integrals does not apply, and so
we are not surprised that contour integrals of z̄ do depend on the contour taken.

Example 17.10. Compute ∫
C

eiz dz

where C is that part of the unit circle in the first quadrant going from 1 to i.

Solution. Observe that f(z) = eiz is continuous in C and F (z) = −ieiz is entire with
F ′(z) = f(z). Therefore, since C is a contour with z(a) = 1 and z(b) = i, the Fundamental
Theorem of Calculus for Contour Integrals implies∫

C

eiz dz = −ieiz
∣∣∣∣
z=i

+ ieiz
∣∣∣∣
z=1

= −ie−1 + iei = iei − ie−1.
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Mathematics 312 (Fall 2012) October 17, 2012
Prof. Michael Kozdron

Lecture #18: The Cauchy Integral Theorem

The goal for today’s class will be to investigate the conditions under which∫
C

f(z) dz = 0

for a closed contour C.

Theorem 18.1 (Fundamental Theorem of Calculus for Integrals over Closed Contours).
Suppose that D is a domain. If f(z) is continuous in D and has an antiderivative F (z)
throughout D (i.e., F (z) is analytic in D with F ′(z) = f(z) for every z ∈ D), then∫

C

f(z) dz = 0

for any closed contour C lying entirely in D.

Proof. This follows from the usual Fundamental Theorem of Calculus. Suppose that C is
parametrized by z = z(t), a ≤ t ≤ b. The hypothesis that f(z) is continuous in D is
necessary for the contour integral ∫

C

f(z) dz

to equal the Riemann integral ∫ b

a

f(z(t)) · z′(t) dt.

The assumption that f has an antiderivative F means that

d

dt
F (z(t)) = F ′(z(t)) · z′(t) = f(z(t)) · z′(t).

Therefore,∫
C

f(z) dz =

∫ b

a

f(z(t)) · z′(t) dt =

∫ b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a))

by the usual Fundamental Theorem of Calculus. The assumption that C is a closed contour
means that z(a) = z(b) which implies F (z(b)) = F (z(a)). Hence,∫

C

f(z) dz = 0

for any closed contour C lying entirely in D.

Remark. This theorem can apply if D is an annulus and C surrounds the hole.
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Theorem 18.2 (Cauchy Integral Theorem, Basic Version). Suppose that D is a domain. If
f(z) is analytic in D and f ′(z) is continuous throughout D, then∫

C

f(z) dz = 0

for any closed contour C lying entirely in D having the property that the region surrounded
by C is a simply connected subdomain of D (in other words, C is continuously deformable
to a point.)

This follows from Green’s theorem and requires the assumptions that f ′(z) be continuous
throughout D and C be continuously deformable to a point. Recall that Green’s theorem is
usually stated as follows.

Theorem 18.3 (Green’s Theorem). Suppose that R is a simply connected domain and that
C = ∂R is a closed contour oriented counterclockwise. Let P = P (x, y) : R → R, Q =
Q(x, y) : R → R be continuously differentiable in R (so that Px, Py, Qx, Qy are continuous
in R). Then,∫

C

P (x, y) dx+Q(x, y) dy =

∫∫
R

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

)
dx dy.

Proof of Cauchy Integral Theorem, Basic Version. Suppose that D is a domain and C is a
closed contour in D which is continuously deformable to a point so that R, the interior of C,
is a simply connected subdomain of D. Suppose further that f(z) is analytic in D and that
f ′(z) is continuous in D. In particular, this means that f(z) is analytic in R, and that f ′(z)
is continuous in R. Thus, if we write f(z) = u(x, y) + iv(x, y) for z ∈ D and dz = dx+ i dy,
then ∫

C

f(z) dz =

∫
C

(u(x, y) + iv(x, y))(dx+ i dy)

=

∫
C

u(x, y) dx+ iv(x, y) dx+ iu(x, y) dy − v(x, y) dy

=

∫
C

u(x, y) dx− v(x, y) dy + i

∫
C

v(x, y) dx+ u(x, y) dy.

Without loss of generality, assume that C is oriented counterclockwise. Since C = ∂R is
a closed contour, R is a simply connected domain, and ux, uy, vx, vy are continuous (since
f(z) is analytic in R and f ′(z) is continuous in R), we can apply Green’s theorem to each
integral separately. That is,∫

C

u(x, y) dx− v(x, y) dy =

∫∫
R

(
−∂v(x, y)

∂x
− ∂u(x, y)

∂y

)
dx dy

= −
∫∫

R

(
∂v(x, y)

∂x
+
∂u(x, y)

∂y

)
dx dy (∗)

and ∫
C

v(x, y) dx+ u(x, y) dy =

∫∫
R

(
∂u(x, y)

∂x
− ∂v(x, y)

∂y

)
dx dy. (∗∗)
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However, since f(z) is analytic in D we know that the Cauchy-Riemann equations are sat-
isfied in D; that is,

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = −vx(x0, y0)

for any z0 = x0 + iy0 ∈ D. This implies that∫∫
R

(
∂v(x, y)

∂x
+
∂u(x, y)

∂y

)
dx dy = 0 and

∫∫
R

(
∂u(x, y)

∂x
− ∂v(x, y)

∂y

)
dx dy = 0

so that (∗) and (∗∗) imply∫
C

f(z) dz =

∫
C

u(x, y) dx− v(x, y) dy + i

∫
C

v(x, y) dx+ u(x, y) dy = 0

as required.

Remark. This theorem cannot apply if D is an annulus and C surrounds the hole.

Example 18.4. Suppose that D = {1 < |z| < 3} is the interior of the annulus of inner
radius 1 and outer radius 3. Let C = {|z| = 2} denote the circle of radius 2. Show∫

C

3z2 dz = 0.

Solution. Observe that D is a domain. Also observe that f(z) = 3z2 is continuous in D
and has antiderivative F (z) = z3 throughout D; that is, F (z) = z3 is analytic in D with
F ′(z) = 3z2 = f(z). The contour C is closed and lies entirely in D. Thus, the hypotheses
have been met for the Fundamental Theorem of Calculus for Integrals over Closed Contours
and so we conclude ∫

C

3z2 dz = 0.

Note that we cannot apply the Cauchy Integral Theorem to solve this problem. It is true
that f(z) = 3z2 is analytic in D with f ′(z) = 6z so that f ′(z) is continuous in D. It is also
true that the contour C lies entirely in D. However, C is not continuously deformable to a
point; in other words, the interior of C is not a simply connected subdomain of D. In fact,
if R ⊂ D denotes the interior of C, then R = {1 < |z| < 2}. Thus, the hypotheses for the
Cauchy Integral Theorem have not been met.

Example 18.5. Suppose that D = {|z| < 3} is the interior of the disk of radius 3. Let
C = {|z| = 2} denote the circle of radius 2. Show∫

C

3z2 dz = 0.

Solution. In this case, since D is a domain and the closed contour C is continuously de-
formable to a point, we can apply the Cauchy Integral Theorem. That is, f(z) = 3z2 is
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analytic in D and the interior of C is {|z| < 2} which is a simply connected subdomain of
D. Therefore, by the Cauchy Integral Theorem, Basic Version, we conclude∫

C

3z2 dz = 0.

Of course, we could also use the Fundamental Theorem of Calculus for Integrals over Closed
Contours to draw the same conclusion. That is, f(z) = 3z2 is continuous in D and has
antiderivative F (z) = z3 throughout D, so that∫

C

3z2 dz = 0

since the hypotheses of Theorem 18.1 have been met.

Remark. The Cauchy Integral Theorem in the form we stated it was first proved by
Augustin-Louis Cauchy (1789–1857). It was later shown by Édouard Goursat (1858–1936)
that the assumption that f ′(z) be continuous is unnecessary.

Theorem 18.6 (Cauchy Integral Theorem, Advanced Version). Suppose that D is a domain.
If f(z) is analytic in D, then ∫

C

f(z) dz = 0

for any closed contour C lying entirely in D having the property that the region surrounded
by C is a simply connected subset of D (in other words, C is continuously deformable to a
point.)

Remark. The proof of this theorem is much too sophisticated for Math 312. However, for
the purposes of this class, any time you are asked to use the Cauchy Integral Theorem, you
will be able to verify that f ′(z) is continuous.

Corollary 18.7 (Cauchy Integral Theorem for Simply Connected Domains, Basic Version).
Suppose that D is a simply connected domain. If f(z) is analytic in D, f ′(z) is continuous
in D, and C is a closed contour lying entirely in D, then∫

C

f(z) dz = 0.

Corollary 18.8 (Cauchy Integral Theorem for Simply Connected Domains, Advanced Ver-
sion). Suppose that D is a simply connected domain. If f(z) is analytic in D and C is a
closed contour lying entirely in D, then∫

C

f(z) dz = 0.

Proof of both corollaries. If D is simply connected, then any closed contour lying entirely in
D is necessarily continuously deformable to a point.
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Mathematics 312 (Fall 2012) October 19, 2012
Prof. Michael Kozdron

Lecture #19: Applications of the Cauchy Integral Theorem

Example 19.1. Suppose p ∈ Z. Compute∫
C

zp dz

where C = {|z| = r} is the circle of radius r > 0 centred at 0 oriented counterclockwise.

Solution. We will consider separately two cases, namely (i) p = 0, 1, 2, . . ., and (ii) p =
−1,−2, . . ..

In the first case, we can use either the Fundamental Theorem of Calculus for Integrals over
Closed Contours or the Cauchy Integral Theorem to conclude∫

C

zp dz = 0.

To use the FTC, observe that f(z) = zp, p = 0, 1, 2, . . ., is continuous in C and that
F (z) = (p + 1)−1zp+1 is analytic in C with F ′(z) = zp = f(z). Since C is a closed contour,
the hypotheses of the FTC have been met so that∫

C

zp dz = 0.

Alternatively, the function f(z) = zp, p = 0, 1, 2, . . ., is analytic in C with f ′(z) = 0 for
p = 0 and f ′(z) = pzp−1 for p = 1, 2, . . .. In any case, f ′(z) is continuous in C. Thus,
the hypotheses of the Cauchy Integral Theorem, Basic Version have been met and so we
conclude ∫

C

zp dz = 0

as before.

In the second case, consider the function f(z) = zp, p = −1,−2, . . .. This function is not
defined at z = 0 and so it is necessarily not continuous at z = 0 and not analytic at z = 0.
Thus, in order to compute ∫

C

zp dz

we cannot use either the FTC or the Cauchy Integral Theorem. Hence, we must compute it
as a contour integral using a parametrization of C. Let z(t) = reit, 0 ≤ t ≤ 2π, parametrize
C oriented counterclockwise. Since z′(t) = ireit, we find∫

C

zp dz =

∫ 2π

0

(reit)p · ireit dt = irp+1

∫ 2π

0

ei(p+1)t dt.

We now consider two subcases. If p = −1, then∫
C

zp dz =

∫
C

z−1 dz = ir(−1)+1

∫ 2π

0

ei((−1)+1)t dt = i

∫ 2π

0

dt = 2πi.
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If p = −2,−3, . . ., then∫
C

zp dz = irp+1

∫ 2π

0

ei(p+1)t dt =
irp+1

i(p+ 1)
ei(p+1)t

∣∣∣∣t=2π

t=0

=
rp+1

p+ 1
[ei(p+1)2π − 1] = 0

since ei(p+1)2π = 1 as p ∈ Z.

In summary, we have ∫
C

zp dz =

{
2πi, if p = −1,

0, if p ∈ Z, p 6= 0.

Example 19.2. Suppose that C = {|z| = r} is the circle of radius r > 0 centred at 0
oriented counterclockwise. Let a ∈ C. Compute∫

C

1

z − a dz

assuming that (i) a is outside C and (ii) a is inside C. (Note that a is never on C.)

Solution. If a is outside C, then there is some simply connected domain D containing C
but not a. Moreover, the function f(z) = (z− a)−1 is analytic in D with f ′(z) = −(z− a)−2

for z ∈ D so that f ′(z) is continuous in D. Hence, the hypotheses of the Cauchy Integral
Theorem, Basic Version have been met so that∫

C

1

z − a dz = 0.

On the other hand, suppose that a is inside C and let R denote the interior of C. Since
the function f(z) = (z − a)−1 is not analytic in any domain containing R, we cannot apply
the Cauchy Integral Theorem. Hence, we must compute it as a contour integral using a
parametrization of C. Let z(t) = reit, 0 ≤ t ≤ 2π, parametrize C oriented counterclockwise.
Since z′(t) = ireit, we find∫

C

1

z − a dz =

∫ 2π

0

1

reit − a · ire
it dt =

∫ 2π

0

ireit

reit − a dt.

Now we would like to compute the Riemann integral. Observe that if the imaginary unit i
were absent (and assuming a ∈ R) we would find∫ 2π

0

ret

ret − a dt = log(ret − a)

∣∣∣∣t=2π

t=0

where the log is a natural logarithm. However, the inclusion of the imaginary unit i means
that we cannot simply say ∫ 2π

0

ireit

reit − a dt = Log(reit − a)

∣∣∣∣t=2π

t=0

(∗)
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where the Log is the principal value of the logarithm. In fact, observe that

Log(reit − a)

∣∣∣∣t=2π

t=0

= Log(rei2π − a)− Log(r − a) = Log(r − a)− Log(r − a) = 0

and so if (∗) were actually true, we would find∫
C

1

z − a dz =

∫ 2π

0

ireit

reit − a dt = 0.

But we have already shown that in the case a = 0, the integral does not equal 0, but rather∫
C

1

z
dz = 2πi.

This means that in order to compute ∫ 2π

0

ireit

reit − a dt

we must consider the real and imaginary parts separately. Now,

reit

reit − a =
reit

reit − a ·
re−it − ā
re−it − ā =

r2 − āreit
r2 − āreit − are−it + |a|2

=
r2 − |a|rei(t−Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)

=
r2 − |a|r cos(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
− i |a|r sin(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)

so that∫ 2π

0

ireit

reit − a dt

=

∫ 2π

0

|a|r sin(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
dt+ i

∫ 2π

0

r2 − |a|r cos(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
dt.

Now,∫ 2π

0

|a|r sin(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
=

1

2
log(r2 + |a|2 − 2|a|r cos(t− Arg a))

∣∣∣∣t=2π

t=0

=
1

2
log(r2 + |a|2 − 2|a|r cos(2π − Arg a))− 1

2
log(r2 + |a|2 − 2|a|r cos(0− Arg a))

=
1

2
log(r2 + |a|2 − 2|a|r cos(Arg a))− 1

2
log(r2 + |a|2 − 2|a|r cos(Arg a))

= 0

since r > |a|. (Recall that a is inside C. This is crucial in order for the logarithms to be
natural logarithms of positive real numbers.) However, it is rather tricky to compute∫ 2π

0

r2 − |a|r cos(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
dt =

∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt.
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One way of doing it is as follows. Observe that∫ −2|a|r cos t

r2 + |a|2 − 2|a|r cos t
dt =

∫
r2 + |a|2 − 2|a|r cos t

r2 + |a|2 − 2|a|r cos t
dt−

∫
r2 + |a|2

r2 + |a|2 − 2|a|r cos t
dt

=

∫
1 dt−

∫
r2 + |a|2

r2 + |a|2 − 2|a|r cos t
dt

= t−
∫

r2 + |a|2
r2 + |a|2 − 2|a|r cos t

dt

so that ∫ −|a|r cos t

r2 + |a|2 − 2|a|r cos t
dt =

t

2
− 1

2

∫
r2 + |a|2

r2 + |a|2 − 2|a|r cos t
dt

which in turn implies that∫
r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt =

∫
r2

r2 + |a|2 − 2|a|r cos t
dt+

t

2
− 1

2

∫
r2 + |a|2

r2 + |a|2 − 2|a|r cos t
dt

=
t

2
+

1

2

∫
r2 − |a|2

r2 + |a|2 − 2|a|r cos t
dt.

Recall that cos t = cos2(t/2)− sin2(t/2) and 1 = cos2(t/2) + sin2(t/2) so that

1

2

∫
r2 − |a|2

r2 + |a|2 − 2|a|r cos t
dt

=
1

2

∫
r2 − |a|2

r2 + |a|2 − 2|a|r(cos2(t/2)− sin2(t/2))
dt

=
1

2

∫
r2 − |a|2

(r2 + |a|2)(cos2(t/2) + sin2(t/2))− 2|a|r(cos2(t/2)− sin2(t/2))
dt

=
1

2

∫
r2 − |a|2

(r2 + |a|2 − 2|a|r) cos2(t/2) + (r2 + |a|2 + 2|a|r) sin2(t/2)
dt

=
1

2

∫
r2 − |a|2

(r − |a|)2 cos2(t/2) + (r + |a|)2 sin2(t/2)
dt

=
r2 − |a|2

2(r − |a|)2

∫
sec2(t/2)

1 +
(
r+|a|
r−|a| tan(t/2)

)2 dt

=
r + |a|

2(r − |a|)

∫
sec2(t/2)

1 +
(
r+|a|
r−|a| tan(t/2)

)2 dt.

Make the substitution

θ =
r + |a|
r − |a| tan(t/2) so that dθ =

r + |a|
2(r − |a|) sec2(t/2) dt

which implies

r + |a|
2(r − |a|)

∫
sec2(t/2)

1 +
(
r+|a|
r−|a| tan(t/2)

)2 dt =

∫
1

1 + θ2
dθ = arctan θ = arctan

(
r + |a|
r − |a| tan(t/2)

)
.
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Hence, ∫
r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt =

t

2
+ arctan

(
r + |a|
r − |a| tan(t/2)

)
.

However, if we want to compute the definite integral∫ 2π

0

r2 − |a|r cos(t− Arg a)

r2 + |a|2 − 2|a|r cos(t− Arg a)
dt =

∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

we cannot just write∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt =

[
t

2
+ arctan

(
r + |a|
r − |a| tan(t/2)

)]t=2π−Arg a

t=−Arg a

.

The reason for this is that the definite integral on the left in the previous expression is
actually improper. This can be seen by considering the expression on the right. The trouble
spot is when t = π; that is, tan(π/2) is not defined, and so we cannot just compute the
integral over the range −Arg a ≤ t ≤ 2π − Arg a without considering what happens when
t = π. Since Arg a ∈ (−π, π], we can conclude that −Arg a ≤ π ≤ 2π − Arg a so that the
trouble spot is actually in the range of integration. That is,∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

=

∫ π

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt+

∫ 2π−Arg a

π

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

= lim
θ↑π

∫ θ

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt+ lim

θ↓π

∫ 2π−Arg a

θ

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt.

Now

lim
θ↑π

∫ θ

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

= lim
θ↑π

[
t

2
+ arctan

(
r + |a|
r − |a| tan(t/2)

)]t=θ
t=−Arg a

=
π

2
+

Arg a

2
− arctan

(
r + |a|
r − |a| tan

(
−Arg a

2

))
+ lim

θ↑π
arctan

(
r + |a|
r − |a| tan(t/2)

)
(∗)

and

lim
θ↓π

∫ 2π−Arg a

θ

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

= lim
θ↓π

[
t

2
+ arctan

(
r + |a|
r − |a| tan(t/2)

)]t=2π−Arg a

t=θ

=
π

2
− Arg a

2
+ arctan

(
r + |a|
r − |a| tan

(
π − Arg a

2

))
− lim

θ↓π
arctan

(
r + |a|
r − |a| tan(t/2)

)
(∗∗)
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so that adding (∗) and (∗∗) and using the fact that tan(−θ) = tan(π − θ) implies∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt

= π + lim
θ↑π

arctan

(
r + |a|
r − |a| tan(t/2)

)
− lim

θ↓π
arctan

(
r + |a|
r − |a| tan(t/2)

)
Since tan(t/2)→∞ as t ↑ π and since tan(t/2)→ −∞ as t ↓ π, we conclude

lim
θ↑π

arctan

(
r + |a|
r − |a| tan(t/2)

)
=
π

2

and

lim
θ↓π

arctan

(
r + |a|
r − |a| tan(t/2)

)
= −π

2

so that ∫ 2π−Arg a

−Arg a

r2 − |a|r cos t

r2 + |a|2 − 2|a|r cos t
dt = π +

π

2
+
π

2
= 2π.

In summary, we have shown that∫
C

1

z − a dz =

∫ 2π

0

ireit

reit − a dt = 2πi

if a is inside C = {|z| = r}, the circle of radius r > 0 centred at 0 oriented counterclockwise.
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Mathematics 312 (Fall 2012) October 22, 2012
Prof. Michael Kozdron

Lecture #20: Applications of the Cauchy Integral Theorem

Last lecture we derived two results by direct calculation, namely∫
C

1

z
dz = 2πi

where C is the circle of radius r > 0 centred at 0 oriented counterclockwise and, more
generally, ∫

C

1

z − a dz = 2πi

for any a ∈ C with |a| < r. Note that the first result is a special case of the second result
(i.e., with a = 0). Also note that the first result was relatively easy to derive whereas the
second result was not.

Example 20.1. Suppose that Ca = {|z − a| < r} denotes the circle of radius r > 0 centred
at a oriented counterclockwise. Compute∫

Ca

1

z − a dz.

Solution. Since the function

f(z) =
1

z − a
is not analytic at a which happens to be inside Ca, we must evaluate this contour integral
by definition. Let z(t) = a+ reit, 0 ≤ t ≤ 2π, parametrize C so that z′(t) = ireit. Therefore,∫

Ca

1

z − a dz =

∫ 2π

0

1

z(t)− az
′(t) dt =

∫ 2π

0

ireit

a+ reit − a dt =

∫ 2π

0

i dt = 2πi.

We have now determined by direct calculations that∫
C

1

z − a dz =

∫
Ca

1

z − a dz = 2πi

where C is the circle of radius r > 0 centred at 0 oriented counterclockwise, Ca is the circle
of radius r > 0 centred at a oriented counterclockwise, and |a| < r. We will now show that
it is easy to determine ∫

C

1

z − a dz = 2πi

as a consequence of the fact that ∫
Ca

1

z − a dz = 2πi

which will render our horrendous calculation from Lecture #19 unnecessary. Consider Fig-
ure 20.1 below.
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a C

z1

z2

P3 P2

P4 P1

Γ2 Γ1

Ca

γ1

γ2

Figure 20.1: Continuous deformation of C into Ca.

Here we have taken z1 and z2 to be the points of intersection of Ca with the negative and
positive imaginary axes, respectively. The curve Γ1 connects z1 to z2 counterclockwise along
Ca while the curve Γ2 connects z2 with z1 counterclockwise along Ca. Note that∫

Ca

1

z − a dz =

∫
Γ1

1

z − a dz +

∫
Γ2

1

z − a dz.

Let P1 be the curve that connects Ca to C along the negative imaginary axis, and let P4

be the curve that connects C to Ca along the negative imaginary axis. Similarly, let P2

be the curve that connects C to Ca along the positive imaginary axis, and let P3 be the
curve that connects Ca to C along the positive imaginary axis. Finally, let γ1 be the curve
counterclockwise along C connecting P1 to P2, and let γ2 be the curve counterclockwise along
C connecting P3 to P4. Note that∫

C

1

z − a dz =

∫
γ1

1

z − a dz +

∫
γ2

1

z − a dz.

Now here is the key. The function

f(z) =
1

z − a
is analytic everywhere in C except at a. Therefore, the Fundamental Theorem of Calculus
tells us that the value of the contour integral of f(z) over any curve going from z1 to z2 is
independent of the curve taken (as long as that curve does not pass through a). Now here
are two curves going from z1 to z2, namely (i) Γ1, and (ii) P1 ⊕ γ1 ⊕ P2. This means∫

Γ1

1

z − a dz =

∫
P1⊕γ1⊕P2

1

z − a dz =

∫
P1

1

z − a dz +

∫
γ1

1

z − a dz +

∫
P2

1

z − a dz.

20–2



Similarly,∫
Γ2

1

z − a dz =

∫
P3⊕γ2⊕P4

1

z − a dz =

∫
P3

1

z − a dz +

∫
γ2

1

z − a dz +

∫
P4

1

z − a dz.

Adding these together gives∫
Γ1

1

z − a dz +

∫
Γ2

1

z − a dz

=

∫
P1

1

z − a dz +

∫
P3

1

z − a dz +

∫
γ1

1

z − a dz +

∫
γ2

1

z − a dz +

∫
P2

1

z − a dz +

∫
P4

1

z − a dz.

However, since P1 and P4 follow the same path but in different directions, we have∫
P1

1

z − a dz = −
∫
P4

1

z − a dz.

Similarly, P2 and P3 follow the same path but in the different directions so that∫
P2

1

z − a dz = −
∫
P3

1

z − a dz.

This implies ∫
Γ1

1

z − a dz +

∫
Γ2

1

z − a dz =

∫
γ1

1

z − a dz +

∫
γ2

1

z − a dz.

But we know ∫
Γ1

1

z − a dz +

∫
Γ2

1

z − a dz =

∫
Ca

1

z − a dz

and ∫
γ1

1

z − a dz +

∫
γ2

1

z − a dz =

∫
C

1

z − a dz

so that ∫
C

1

z − a dz =

∫
Ca

1

z − a dz = 2πi

as desired.
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Lecture #21: Applications of the Cauchy Integral Theorem

Last lecture we showed that if C is the circle of radius r > 0 centred at 0 oriented counter-
clockwise, Ca is the circle of radius r > 0 centred at a oriented counterclockwise, and |a| < r,
then ∫

C

1

z − a dz =

∫
Ca

1

z − a dz = 2πi. (∗)

By constructing an appropriate picture, we were able to continuously deform C to Ca and
show that (∗) held. Of course, the same construction holds for any contour C oriented
counterclockwise surrounding the point a as shown in Figure 21.1 below.

��
a

C

Ca

Figure 21.1: Continuous deformation of C into Ca.

This leads to the following fact.

Theorem 21.1. If C is a closed contour in the complex plane oriented counterclockwise and
a ∈ C is in the interior of C, then ∫

C

1

z − a dz = 2πi.

Example 21.2. Compute ∫
C

1

z + i
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.

Solution. Since | − i| = 1 < 2, we see that a = −i is inside C so that∫
C

1

z + i
dz = 2πi.

Example 21.3. Compute ∫
C

1

2z + i
dz

where C = {|z| = 2} is the circle of radius 2 centred at 0 oriented counterclockwise.
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Solution. Since the integrand is not of the form (z − a)−1, we cannot use the fact immedi-
ately. However, ∫

C

1

2z + i
dz =

1

2

∫
C

1

z + i/2
dz =

1

2
(2πi) = πi

since a = −i/2 is inside of the circle of radius 2 centred at 0.

Example 21.4. Compute ∫
C

3z − 2

z2 − z dz

where C is the simple closed contour indicated in Figure 21.2 below.

��
��
��
��

�
�
�
�

C

10

Figure 21.2: Figure for Example 21.4.

Solution. The trick is to use partial fractions on the integrand. That is,

3z − 2

z2 − z =
3z − 2

z(z − 1)
=
A

z
+

B

z − 1

if and only if
A(z − 1) +Bz = (A+B)z − A = 3z − 2.

This, of course, is true if and only if A = 2 and B = 1. That is,

3z − 2

z2 − z =
2

z
+

1

z − 1

and so∫
C

3z − 2

z2 − z dz =

∫
C

2

z
dz +

∫
C

1

z − 1
dz = 2

∫
C

1

z
dz +

∫
C

1

z − 1
dz = 2(2πi) + 2πi = 6πi.

Example 21.5. Compute ∫
C

3z − 2

z2 − z dz

where C is the simple closed contour indicated in Figure 21.3 below.

Solution. Again we can write∫
C

3z − 2

z2 − z dz = 2

∫
C

1

z
dz +

∫
C

1

z − 1
dz.
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Figure 21.3: Figure for Example 21.5.

This time, however, (z − 1)−1 is analytic inside C since 1 is not inside C. The Cauchy
Integral Theorem, Basic Version tells us that∫

C

1

z − 1
dz = 0.

Therefore, ∫
C

3z − 2

z2 − z dz = 2

∫
C

1

z
dz +

∫
C

1

z − 1
dz = 2(2πi) + 0 = 4πi.

Example 21.6. Compute ∫
C

1

z2 − 1
dz

where C is the simple closed contour indicated in Figure 21.4 below.

�
�
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�

�
�
�
�

1−1

C

Figure 21.4: Figure for Example 21.6.

Solution. Using partial fractions, we find

1

z2 − 1
=

1

(z − 1)(z + 1)
=

1/2

z − 1
− 1/2

z + 1
.

Since z = 1 is not inside C, the Cauchy Integral Theorem, Basic Version tells us that∫
C

1

z − 1
dz = 0.

Therefore, ∫
C

1

z2 − 1
dz =

1

2

∫
C

1

z − 1
dz − 1

2

∫
C

1

z + 1
dz = 0− 1

2
(2πi) = −πi.
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