Math 312 Fall 2012 Final Exam - Solutions

1. Since $e^{z} \neq 0$ for all $z \in \mathbb{C}$, we can multiply $e^{z}+2 e^{-z}=3$ by e^{z} and simplify obtain $e^{2 z}-3 e^{z}+2=0$. Notice that $e^{2 z}-3 e^{z}+2=\left(e^{z}-2\right)\left(e^{z}-1\right)$ and so $e^{2 z}-3 e^{z}+2=0$ iff either $e^{z}-2=0$ or $e^{z}-1=0$. Consider first the equation $e^{z}=1$. Since $e^{2 \pi k i}=1$ for any $k \in \mathbb{Z}$, we conclude that $e^{z}-1=0$ iff $z \in\{2 \pi k i, k \in \mathbb{Z}\}$. Now consider $e^{z}=2$. Since $e^{\log 2+2 \pi k i}=2$ for any $k \in \mathbb{Z}$, we conclude that $e^{z}-2=0$ iff $z \in\{\log 2+2 \pi k i, k \in \mathbb{Z}\}$. This implies that if $z \in\{2 \pi k i, k \in \mathbb{Z}\} \cup\{\log 2+2 \pi k i, k \in \mathbb{Z}\}=\{2 \pi k i, \log 2+2 \pi k i, k \in \mathbb{Z}\}$, then $e^{z}+2 e^{-z}=3$. Since we are only interested in those z with $|z|<10$, we see that

$$
z \in\{0,2 \pi i,-2 \pi i, \log 2, \log 2+2 \pi i, \log 2-2 \pi i\}
$$

2. Consider the function $g(z)=-i z$. Since the action of $g(z)$ is rotation clockwise by an angle of $\pi / 2$, we see that the image of D under $g(z)$ is $E=\{z: \operatorname{Re}(z)<0,0<\operatorname{Im}(z)<\pi / 2\}$. Now let $f(z)=e^{z}$ so that $w=f(g(z))$. The image of D under w is exactly the image of E under $f(z)$. Observe that we can express E as $E=\{z=x+i y: x<0$ and $0<y<\pi / 2\}$. Since $e^{z}=e^{x} e^{i y}$ and $x<0$, we conclude that $\left|e^{z}\right|=e^{x}<1$. Moreover, $e^{i y}$ for $0<y<\pi / 2$ describes that part of the unit circle centred at 0 in the first quadrant. Thus, the image of D in the w-plane is exactly $\{w \in \mathbb{C}:|w|<1,0<\operatorname{Arg}(w)<\pi / 2\}$.
3. (i) We begin by observing that

$$
f(z)=\frac{z}{z^{2}-4 z+3}=\frac{3 / 2}{z-3}-\frac{1 / 2}{z-1}=\frac{1 / 2}{1-z}-\frac{3 / 2}{3-z}=\frac{1 / 2}{1-z}-\frac{1 / 2}{1-z / 3} .
$$

Since

$$
\frac{1}{1-z}=\sum_{j=0}^{\infty} z^{j} \quad \text { for }|z|<1 \text { and } \quad \frac{1}{1-z / 3}=\sum_{j=0}^{\infty} 3^{-j} z^{j} \quad \text { for }|z|<3
$$

we conclude that if $|z|<1$, then

$$
f(z)=\frac{1}{2} \sum_{j=0}^{\infty} z^{j}-\frac{1}{2} \sum_{j=0}^{\infty} 3^{-j} z^{j}=\sum_{j=0}^{\infty} \frac{1-3^{-j}}{2} z^{j}
$$

(ii) We now observe that

$$
f(z)=\frac{z}{z^{2}-4 z+3}=\frac{3 / 2}{z-3}-\frac{1 / 2}{z-1}=-\frac{1 / 2}{1-z / 3}-\frac{1}{2 z} \frac{1}{1-1 / z} .
$$

Since

$$
\frac{1}{2 z} \frac{1}{1-1 / z}=\frac{1}{2 z} \sum_{j=0}^{\infty} z^{-j}=\frac{1}{2} \sum_{j=0}^{\infty} z^{-1-j} \quad \text { for }|z|>1 \text { and } \quad \frac{1}{1-z / 3}=\sum_{j=0}^{\infty} 3^{-j} z^{j} \quad \text { for }|z|<3
$$

we conclude that if $1<|z|<3$, then

$$
f(z)=-\frac{1}{2} \sum_{j=0}^{\infty} 3^{-j} z^{j}-\frac{1}{2} \sum_{j=0}^{\infty} z^{-1-j}=-\frac{1}{2} \sum_{j=0}^{\infty} 3^{-j} z^{j}-\frac{1}{2} \sum_{j=1}^{\infty} z^{-j}
$$

(iii) We now observe that

$$
f(z)=\frac{z}{z^{2}-4 z+3}=\frac{3 / 2}{z-3}-\frac{1 / 2}{z-1}=\frac{3}{2 z} \frac{1}{1-3 / z}-\frac{1}{2 z} \frac{1}{1-1 / z} .
$$

Since

$$
\frac{1}{2 z} \frac{1}{1-1 / z}=\frac{1}{2} \sum_{j=0}^{\infty} z^{-1-j}
$$

for $|z|>1$ and

$$
\frac{3}{2 z} \frac{1}{1-3 / z}=\frac{3}{2 z} \sum_{j=0}^{\infty} 3^{j} z^{-j}=\frac{1}{2} \sum_{j=0}^{\infty} 3^{j+1} z^{-1-j}
$$

for $|z|>3$, we conclude that if $|z|>3$, then

$$
f(z)=\frac{1}{2} \sum_{j=0}^{\infty} 3^{j+1} z^{-1-j}-\frac{1}{2} \sum_{j=0}^{\infty} z^{-1-j}=\frac{1}{2} \sum_{j=0}^{\infty}\left(3^{j+1}-1\right) z^{-1-j}=\frac{1}{2} \sum_{j=1}^{\infty} \frac{3^{j}-1}{z^{j}} .
$$

4. Observe that $\left(z^{2}+1\right)^{3}=(z-i)^{3}(z+i)^{3}$ so that

$$
f(z)=\frac{1}{\left(z^{2}+1\right)^{3}}=\frac{1}{(z-i)^{3}(z+i)^{3}}
$$

has poles of order 3 at $z_{1}=i$ and $z_{2}=-i$. Note that only z_{1} is inside C. Since

$$
\operatorname{Res}(f(z) ; i)=\left.\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}} \frac{1}{(z+i)^{3}}\right|_{z=i}=\left.\frac{1}{2} \frac{12}{(z+i)^{5}}\right|_{z=i}=\frac{6}{(2 i)^{5}}=\frac{6}{32 i}=\frac{3}{16 i},
$$

we conclude from the residue theorem that

$$
\int_{C} \frac{1}{\left(z^{2}+1\right)^{3}} \mathrm{~d} z=2 \pi i \frac{3}{16 i}=\frac{3 \pi}{8} .
$$

5. Suppose that $C=\{|z|=1\}$ oriented counterclockwise is parametrized by $z(\theta)=e^{i \theta}$, $0 \leq \theta \leq 2 \pi$. Since $z^{\prime}(\theta)=i e^{i \theta}=i z(\theta)$, we obtain

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{5-4 \cos \theta} \mathrm{~d} \theta=\int_{0}^{2 \pi} \frac{\frac{1}{2}\left(z(\theta)+z(\theta)^{-1}\right)}{5-4 \frac{1}{2}\left(z(\theta)+z(\theta)^{-1}\right)} \frac{z^{\prime}(\theta)}{i z(\theta)} \mathrm{d} \theta=\int_{C} \frac{z+z^{-1}}{10-4\left(z+z^{-1}\right)} \frac{1}{i z} \mathrm{~d} z
$$

We now observe that

$$
\int_{C} \frac{z+z^{-1}}{10-4\left(z+z^{-1}\right)} \frac{1}{i z} \mathrm{~d} z=\frac{1}{i} \int_{C} \frac{z^{2}+1}{z\left(10 z-4 z^{2}-4\right)} \mathrm{d} z=\frac{i}{2} \int_{C} \frac{z^{2}+1}{z\left(2 z^{2}-5 z+2\right)} \mathrm{d} z .
$$

Let

$$
f(z)=\frac{z^{2}+1}{z\left(2 z^{2}-5 z+2\right)}=\frac{z^{2}+1}{z(2 z-1)(z-2)}
$$

so that $f(z)$ has simple poles at $z_{0}=0, z_{1}=1 / 2$, and $z_{2}=2$.
(continued)

Notice that only $z_{0}=0$ and $z_{1}=1 / 2$ are inside C. Therefore,

$$
\operatorname{Res}(f(z) ; 0)=\left.\frac{z^{2}+1}{(2 z-1)(z-2)}\right|_{z=0}=\frac{1}{2}
$$

and

$$
\operatorname{Res}(f(z) ; 1 / 2)=\left.(z-1 / 2) \frac{z^{2}+1}{z(2 z-1)(z-2)}\right|_{z=1 / 2}=\left.\frac{z^{2}+1}{2 z(z-2)}\right|_{z=1 / 2}=\frac{5 / 4}{1 / 2-2}=-\frac{5}{6} .
$$

By the residue theorem we obtain

$$
\int_{0}^{2 \pi} \frac{\cos \theta}{5-4 \cos \theta} \mathrm{~d} \theta=\frac{i}{2} \int_{C} f(z) \mathrm{d} z=\frac{i}{2} 2 \pi i\left(\frac{1}{2}-\frac{5}{6}\right)=\frac{\pi}{3} .
$$

6. (a) Consider $z^{5}-1=0$. The solutions of this equation are $z_{0}=1, z_{1}=e^{2 \pi i / 5}, z_{2}=e^{4 \pi i / 5}$, $z_{3}=e^{6 \pi i / 5}$, and $z_{4}=e^{8 \pi i / 5}$. Since $(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)=\left(z^{5}-1\right)$, we conclude that the roots of $(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)$ must equal the roots of $z^{5}-1$. Clearly, $z_{0}=1$ is the root of $(z-1)$. This means that the four roots of $P(z)=z^{4}+z^{3}+z^{2}+z+1$ must be the other four roots of $z^{5}-1$, namely $z_{1}=e^{2 \pi i / 5}, z_{2}=e^{4 \pi i / 5}, z_{3}=e^{6 \pi i / 5}$, and $z_{4}=e^{8 \pi i / 5}$.
(b) Notice that we can write

$$
f(z)=\frac{z^{2}-z}{z^{9}-z^{4}}=\frac{z(z-1)}{z^{4}\left(z^{5}-1\right)}=\frac{z(z-1)}{z^{4}(z-1)\left(z^{4}+z^{3}+z^{2}+z+1\right)}=\frac{z(z-1)}{z^{4}(z-1) P(z)}
$$

which is a ratio of polynomials. This means that isolated singular points will occur precisely where the denominator is 0 . Notice that $z^{4}(z-1) P(z)$ has 6 zeros, namely $z_{0}=1, z_{1}=e^{2 \pi i / 5}$, $z_{2}=e^{4 \pi i / 5}, z_{3}=e^{6 \pi i / 5}, z_{4}=e^{8 \pi i / 5}$, and $z_{5}=0$. Now consider the numerator, $z(z-1)$, which has zeros at $z_{0}=1$ and $z_{5}=0$. Since the order of the zero at $z_{0}=1$ is the same in both the numerator and the denominator, we conclude $z_{0}=1$ is a removable singularity. Since the order of the zero at $z_{5}=0$ is 1 in the numerator and 4 in the denominator, we conclude that $z_{5}=0$ is a pole of order $4-1=3$. Finally, since the zeros of $P(z)$ are not zeros of the numerator, we conclude that $z_{1}=e^{2 \pi i / 5}, z_{2}=e^{4 \pi i / 5}, z_{3}=e^{6 \pi i / 5}$, and $z_{4}=e^{8 \pi i / 5}$ are each simple poles.
7. Suppose that $f(z)=z^{3} e^{-1 / z}$. Observe that $z_{0}=0$ is an isolated singular point of $f(z)$ that lies inside C. Therefore, we conclude from the residue theorem that

$$
\int_{C} f(z) \mathrm{d} z=2 \pi i \operatorname{Res}(f(z) ; 0)
$$

However, since $z_{0}=0$ is clearly an essential singularity, the only way to compute $\operatorname{Res}(f(z) ; 0)$ is to determine the Laurent series for $f(z)$ valid for $|z|>0$. Now,

$$
e^{-1 / z}=1-\frac{1}{z}+\frac{1}{2!z^{2}}-\frac{1}{3!z^{3}}+\frac{1}{4!z^{4}}-\frac{1}{5!z^{5}}+\cdots
$$

for $|z|>0$ so that

$$
z^{3} e^{-1 / z}=z^{3}-z^{2}+\frac{z}{2!}-\frac{1}{3!}+\frac{1}{4!z}-\frac{1}{5!z^{2}}+\cdots
$$

for $|z|>0$.
(continued)

Thus, $\operatorname{Res}(f(z) ; 0)=\frac{1}{4!}$ so that

$$
\int_{C} z^{3} e^{-1 / z} \mathrm{~d} z=2 \pi i \frac{1}{4!}=\frac{\pi i}{12}
$$

8. (a) Observe that the Laurent series for $h(w)=\frac{\sin w}{w}$ about the point 0 is

$$
\frac{\sin w}{w}=\frac{1}{w} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} w^{2 j+1}=\sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)!} w^{2 j}=1-\frac{w^{2}}{3!}+\frac{w^{4}}{5!}-\frac{w^{6}}{7!}+\cdots
$$

This tells us that $w=0$ is a removable singularity for $h(w)$. Hence, in order for $g(w)$ to be analytic at $w=0$, it must be the case that

$$
g(0)=\lim _{w \rightarrow 0} \frac{\sin w}{w}=\lim _{w \rightarrow 0}\left(1-\frac{w^{2}}{3!}+\frac{w^{4}}{5!}-\frac{w^{6}}{7!}+\cdots\right)=1 .
$$

Since $g(0)=w_{0}$, we conclude that $w_{0}=1$.
(b) Observe that if $w \neq 0$, then $g(w)=0$ if and only if $\sin w=0$. Since $\sin w=0$ if and only if $w=k \pi$ for some $k \in \mathbb{Z}$, we conclude that $g(w)=0$ if and only if $w=k \pi$ for some $k \in \mathbb{Z} \backslash\{0\}$. Since $|k \pi|>3$ for any $k \in \mathbb{Z} \backslash\{0\}$, we conclude that $g(w) \neq 0$ for any $|w| \leq 3$.
(c) Suppose that f is entire. Fix z with $|z|<1$ and consider the function

$$
F(\zeta)=\frac{f(\zeta)}{g(\zeta-z)}
$$

defined for any $|\zeta| \leq 2$. As a result of (b), we know that $F(\zeta)$ is analytic inside and on the unit circle C since $g(\zeta-z) \neq 0$ for any $|z|<1$ and $|\zeta| \leq 2$. (Indeed, suppose that $|z|<1$ and $|\zeta| \leq 2$. If $w=\zeta-z$, then by the triangle inequality $|\zeta-z| \leq|\zeta|+|z| \leq 2+1=3$. Thus from (b), we have $g(\zeta-z)=g(w) \neq 0$.) Therefore, we can apply the Cauchy integral theorem to conclude

$$
F(z)=\frac{1}{2 \pi i} \int_{C} \frac{F(\zeta)}{\zeta-z} \mathrm{~d} \zeta .
$$

However, since $g(0)=1$ by (a), we find

$$
F(z)=\frac{f(z)}{g(z-z)}=\frac{f(z)}{g(0)}=f(z)
$$

Furthermore, if $|\zeta| \leq 2$ with $\zeta \neq z$, then

$$
\frac{F(\zeta)}{\zeta-z}=\frac{f(\zeta)}{(\zeta-z) g(\zeta-z)}=\frac{f(\zeta)}{\sin (\zeta-z)}
$$

so that

$$
f(z)=F(z)=\frac{1}{2 \pi i} \int_{C} \frac{F(\zeta)}{\zeta-z} \mathrm{~d} \zeta=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\sin (\zeta-z)} \mathrm{d} \zeta
$$

as required.

