Solutions to Math 305 Midterm Exam \#2

1. We find

$$
\left|\frac{4 n^{2}+7}{3 n^{2}-2 n}-\frac{4}{3}\right|=\left|\frac{12 n^{2}+21-12 n^{2}+8 n}{3\left(3 n^{2}-2 n\right)}\right|=\left|\frac{8 n+21}{3\left(3 n^{2}-2 n\right)}\right| .
$$

By the triangle inequality,

$$
|8 n+21| \leq 8 n+21 n=29 n
$$

for all $n \geq 1$. Moreover,

$$
\left|3 n^{2}-2 n\right|=3 n^{2}-2 n \geq 3 n^{2}-2 n^{2}=n^{2}
$$

provided that $3 n^{2}-2 n \geq 0$ and $-2 n \geq-2 n^{2}$. Note that if $n \geq 1$, then it is certainly true that $3 n \geq 2$, or equivalently, $3 n^{2}-2 n \geq 0$. Moreover, if $n \geq 1$, then clearly $2 n \leq 2 n^{2}$ so that $-2 n \geq-2 n^{2}$. In brief, if $n \geq 1$, then

$$
\left|\frac{4 n^{2}+7}{3 n^{2}-2 n}-\frac{4}{3}\right| \leq \frac{|8 n+21|}{3\left|3 n^{2}-2 n\right|} \leq \frac{29 n}{3 n^{2}}=\frac{29}{3 n} .
$$

Thus, let $\varepsilon>0$ be given. If

$$
N=\frac{29}{3 \varepsilon}
$$

and $n \geq N$, then

$$
\left|\frac{4 n^{2}+7}{3 n^{2}-2 n}-\frac{4}{3}\right| \leq \frac{29}{3 n} \leq \frac{29}{3 N}=\epsilon
$$

proving that

$$
\lim _{n \rightarrow \infty} \frac{4 n^{2}+7}{3 n^{2}-2 n}=\frac{4}{3}
$$

as required.
2. Let $\varepsilon>0$ be given. Since $\left\{a_{n}\right\}$ is a Cauchy sequence, there exists an N_{1} such that

$$
\left|a_{n}-a_{m}\right|<\frac{\varepsilon}{2}
$$

whenever $n, m \geq N_{1}$. Since $\left\{b_{n}\right\}$ is a Cauchy sequence, there exists an N_{2} such that

$$
\left|b_{n}-b_{m}\right|<\frac{\varepsilon}{2}
$$

whenever $n, m \geq N_{2}$. Therefore, let $N=\max \left\{N_{1}, N_{2}\right\}$. If $n, m \geq N$, then

$$
\left|c_{n}-c_{m}\right|=\left|\left(a_{n}-b_{n}\right)-\left(a_{m}-b_{m}\right)\right| \leq\left|a_{n}-a_{m}\right|+\left|b_{n}-b_{m}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

so that $\left\{c_{n}\right\}$ is, in fact, a Cauchy sequence.
3. Since $\left\{b_{n}\right\}$ is bounded, there exists some M such that

$$
\left|b_{n}\right| \leq M
$$

for all n. Therefore, let $\varepsilon>0$ be given. Since $a_{n} \rightarrow 0$, there exists an N such that if $n \geq N$, then

$$
\left|a_{n}-0\right|=\left|a_{n}\right| \leq \frac{\varepsilon}{M}
$$

Therefore, if $n \geq N$, then

$$
\left|a_{n} b_{n}-0\right|=\left|a_{n} b_{n}\right|=\left|a_{n}\right| \cdot\left|b_{n}\right| \leq \frac{\varepsilon}{M} \cdot M=\varepsilon
$$

proving that $a_{n} b_{n} \rightarrow 0$ as required.
4. (a) Suppose that $c_{n}=a_{n}+b_{n}$ for all n. Let \mathcal{A} denote the set of subsequential limits of $\left\{a_{n}\right\}$, let \mathcal{B} denote the set of subsequential limits of $\left\{b_{n}\right\}$, and let \mathcal{C} denote the set of subsequential limits of $\left\{c_{n}\right\}$ so that

$$
\limsup _{n \rightarrow \infty} a_{n}=\sup \mathcal{A} \in \mathbb{R}, \quad \limsup _{n \rightarrow \infty} b_{n}=\sup \mathcal{B} \in \mathbb{R}, \quad \text { and } \quad \limsup _{n \rightarrow \infty} c_{n}=\sup \mathcal{C} \in \mathbb{R}
$$

using the facts that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded sequences. Moreover, the facts that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded sequences also imply that $\mathcal{A} \neq \emptyset, \mathcal{B} \neq \emptyset$, and $\mathcal{C} \neq \emptyset$. Thus, we need to show that

$$
\sup \mathcal{C} \leq \sup \mathcal{A}+\sup \mathcal{B}
$$

Suppose that $c_{n_{k}}$ is a convergent subsequence of c_{n} with limit $c \in \mathcal{C}$. Since $c_{n_{k}}=a_{n_{k}}+b_{n_{k}}$, there are two possibilities. Either (i) $a_{n_{k}}$ is a convergent subsequence of a_{n} with limit $a \in \mathcal{A}$ and $b_{n_{k}}$ is a convergent subsequence of b_{n} with limit $b \in \mathcal{B}$ or (ii) $a_{n_{k}}$ is not a convergent subsequence of a_{n} and $b_{n_{k}}$ is not a convergent subsequence of b_{n}. (By the limit theorems, it is not possible for $c_{n_{k}}$ to converge along with exactly one of $a_{n_{k}}$ and $b_{n_{k}}$.) We will now consider the two cases separately. For the first case, suppose that $c_{1}=\sup \mathcal{C}$ and assume that $c_{n_{k}}$ is a convergent subsequence of c_{n} with limit c_{1}. Since $c_{n_{k}}=a_{n_{k}}+b_{n_{k}}$ with $c_{n_{k}} \rightarrow c_{1}$, $a_{n_{k}} \rightarrow a$, and $b_{n_{k}} \rightarrow b$, we conclude that

$$
c_{1}=a+b \leq \sup \mathcal{A}+\sup \mathcal{B}
$$

since $a \leq \sup \mathcal{A}$ and $b \leq \sup \mathcal{B}$. For the second case, suppose again that $c_{1}=\sup \mathcal{C}$ and that $c_{n_{k}}$ is a convergent subsequence of c_{n} with limit c_{1}. Since $c_{n_{k}}=a_{n_{k}}+b_{n_{k}}$, but neither $a_{n_{k}}$ nor $b_{n_{k}}$ converge, we need to consider further subsequences. Thus, let $a_{n_{k_{j}}}$ be a convergent subsequence of $a_{n_{k}}$ with limit $a \in \mathcal{A}$. The subsequence $c_{n_{k_{j}}}$ of $c_{n_{k}}$ necessarily converges to c_{1} since $c_{n_{k}} \rightarrow c_{1}$, and so it follows that $b_{n_{k_{j}}}$ is a convergent subsequence of $b_{n_{k}}$ with limit, say, $b \in \mathcal{B}$. Hence, we conclude as before that

$$
c_{1}=a+b \leq \sup \mathcal{A}+\sup \mathcal{B} .
$$

In either case, we have $\sup \mathcal{C} \leq \sup \mathcal{A}+\sup \mathcal{B}$ which completes the proof.
4. (b) Suppose that $a_{n}=(-1)^{n}$ and $b_{n}=(-1)^{n+1}$ so that $c_{n}=a_{n}+b_{n}=0$ for all n. Note that

$$
\limsup _{n \rightarrow \infty} a_{n}=\limsup _{n \rightarrow \infty} b_{n}=1 \quad \text { whereas } \quad \limsup _{n \rightarrow \infty} c_{n}=0
$$

so that

$$
0=\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)<\limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}=1+1=2 .
$$

5. Let $a \in \mathbb{R}$ be arbitrary. Note that

$$
x^{3}-a^{3}=(x-a)\left(x^{2}+a x+a^{2}\right) .
$$

Therefore, if $|x-a|<1$, then $|x|=|x-a+a| \leq|x-a|+|a|<1+|a|$ so that

$$
\left|x^{2}+a x+a^{2}\right| \leq|x|^{2}+|a||x|+a^{2}<(1+|a|)^{2}+|a|(1+|a|)+a^{2}=1+3|a|+3 a^{2} .
$$

Let $\epsilon>0$ be given and choose

$$
\delta=\min \left\{\frac{\varepsilon}{1+3|a|+3 a^{2}}, 1\right\}
$$

This implies that if $|x-a|<\delta$, then

$$
\left|x^{3}-a^{3}\right|=|x-a|\left|x^{2}+a x+a^{2}\right|<\varepsilon
$$

so that

$$
\lim _{x \rightarrow a} x^{3}=a^{3}
$$

as required.
6. (a) Recall that f is continuous at c if and only if $f\left(x_{n}\right)$ converges to $f(c)$ for any sequence x_{n} converging to c. Suppose now that x_{n} converges to 2 . Since $2 \in \mathbb{Q}$ and $f(2)=10$, we must show that $f\left(x_{n}\right) \rightarrow 10$. Let $\varepsilon>0$ and find N such that $n \geq N$ implies $\left|x_{n}-2\right|<\varepsilon$. There are now two possibilities. If $x_{n} \in \mathbb{Q}$ and $n>N$, then $f\left(x_{n}\right)=5 x_{n}$ so that $\left|f\left(x_{n}\right)-10\right|=\left|5 x_{n}-10\right|=2\left|x_{n}-5\right|<2 \epsilon$. If $x_{n} \in \mathbb{R} \backslash \mathbb{Q}$ and $n>N$, then $f\left(x_{n}\right)=x_{n}^{2}+6$ so that $\left|f\left(x_{n}\right)-10\right|=\left|x_{n}^{2}+6-10\right|=\left|x_{n}^{2}-4\right|=\left|x_{n}-2\right|\left|x_{n}+2\right|$. Since $\left|x_{n}-2\right|<\varepsilon$ we know that $\left|x_{n}+2\right| \leq\left|x_{n}-2\right|+4<\varepsilon+4$ which implies that

$$
\left|f\left(x_{n}\right)-10\right|=\left|x_{n}-2\right|\left|x_{n}+2\right|<\varepsilon(\varepsilon+4) .
$$

In either case, if $n \geq N$, then we can make $\left|f\left(x_{n}\right)-10\right|$ arbitrarily close to 0 proving that $f\left(x_{n}\right) \rightarrow f(2)$ whenever $x_{n} \rightarrow 2$.
6. (b) To show that f is discontinuous at 1 , we must show that there exists a sequence $x_{n} \rightarrow 1$ for which $f\left(x_{n}\right)$ does not converge to $f(1)$. Suppose that $x_{n} \in \mathbb{R} \backslash \mathbb{Q}$ with $x_{n} \rightarrow 1$. As an example, take $x_{n}=1-(\sqrt{2} n)^{-1}$. Since $x_{n} \in \mathbb{R} \backslash \mathbb{Q}$, we know that

$$
f\left(x_{n}\right)=x_{n}^{2}+6 \rightarrow 7
$$

However, since $1 \in \mathbb{Q}$, we know that $f(1)=5$. Therefore, $f\left(x_{n}\right)$ does not converge to $f(1)$ proving that f is not continuous at 1 .

