
Solutions to Math 305 Midterm Exam #2
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By the triangle inequality,

|8n+ 21| ≤ 8n+ 21n = 29n

for all n ≥ 1. Moreover,

|3n2 − 2n| = 3n2 − 2n ≥ 3n2 − 2n2 = n2

provided that 3n2 − 2n ≥ 0 and −2n ≥ −2n2. Note that if n ≥ 1, then it is certainly true
that 3n ≥ 2, or equivalently, 3n2 − 2n ≥ 0. Moreover, if n ≥ 1, then clearly 2n ≤ 2n2 so
that −2n ≥ −2n2. In brief, if n ≥ 1, then∣∣∣∣ 4n2 + 7
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Thus, let ε > 0 be given. If

N =
29

3ε
,

and n ≥ N , then ∣∣∣∣ 4n2 + 7

3n2 − 2n
− 4

3

∣∣∣∣ ≤ 29

3n
≤ 29

3N
= ε

proving that

lim
n→∞
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as required.

2. Let ε > 0 be given. Since {an} is a Cauchy sequence, there exists an N1 such that

|an − am| <
ε

2

whenever n,m ≥ N1. Since {bn} is a Cauchy sequence, there exists an N2 such that

|bn − bm| <
ε

2

whenever n,m ≥ N2. Therefore, let N = max{N1, N2}. If n,m ≥ N , then

|cn − cm| = |(an − bn)− (am − bm)| ≤ |an − am|+ |bn − bm| <
ε

2
+
ε

2
= ε

so that {cn} is, in fact, a Cauchy sequence.



3. Since {bn} is bounded, there exists some M such that

|bn| ≤M

for all n. Therefore, let ε > 0 be given. Since an → 0, there exists an N such that if n ≥ N ,
then

|an − 0| = |an| ≤
ε

M
.

Therefore, if n ≥ N , then

|anbn − 0| = |anbn| = |an| · |bn| ≤
ε

M
·M = ε

proving that anbn → 0 as required.

4. (a) Suppose that cn = an + bn for all n. Let A denote the set of subsequential limits
of {an}, let B denote the set of subsequential limits of {bn}, and let C denote the set of
subsequential limits of {cn} so that

lim sup
n→∞

an = supA ∈ R, lim sup
n→∞

bn = supB ∈ R, and lim sup
n→∞

cn = sup C ∈ R

using the facts that {an} and {bn} are bounded sequences. Moreover, the facts that {an}
and {bn} are bounded sequences also imply that A 6= ∅, B 6= ∅, and C 6= ∅. Thus, we need
to show that

sup C ≤ supA+ supB.

Suppose that cnk
is a convergent subsequence of cn with limit c ∈ C. Since cnk

= ank
+ bnk

,
there are two possibilities. Either (i) ank

is a convergent subsequence of an with limit a ∈ A
and bnk

is a convergent subsequence of bn with limit b ∈ B or (ii) ank
is not a convergent

subsequence of an and bnk
is not a convergent subsequence of bn. (By the limit theorems,

it is not possible for cnk
to converge along with exactly one of ank

and bnk
.) We will now

consider the two cases separately. For the first case, suppose that c1 = sup C and assume
that cnk

is a convergent subsequence of cn with limit c1. Since cnk
= ank

+ bnk
with cnk

→ c1,
ank
→ a, and bnk

→ b, we conclude that

c1 = a+ b ≤ supA+ supB

since a ≤ supA and b ≤ supB. For the second case, suppose again that c1 = sup C and that
cnk

is a convergent subsequence of cn with limit c1. Since cnk
= ank

+ bnk
, but neither ank

nor bnk
converge, we need to consider further subsequences. Thus, let ankj

be a convergent

subsequence of ank
with limit a ∈ A. The subsequence cnkj

of cnk
necessarily converges to

c1 since cnk
→ c1, and so it follows that bnkj

is a convergent subsequence of bnk
with limit,

say, b ∈ B. Hence, we conclude as before that

c1 = a+ b ≤ supA+ supB.

In either case, we have sup C ≤ supA+ supB which completes the proof.
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4. (b) Suppose that an = (−1)n and bn = (−1)n+1 so that cn = an + bn = 0 for all n. Note
that

lim sup
n→∞

an = lim sup
n→∞

bn = 1 whereas lim sup
n→∞

cn = 0

so that
0 = lim sup

n→∞
(an + bn) < lim sup

n→∞
an + lim sup

n→∞
bn = 1 + 1 = 2.

5. Let a ∈ R be arbitrary. Note that

x3 − a3 = (x− a)(x2 + ax+ a2).

Therefore, if |x− a| < 1, then |x| = |x− a+ a| ≤ |x− a|+ |a| < 1 + |a| so that

|x2 + ax+ a2| ≤ |x|2 + |a||x|+ a2 < (1 + |a|)2 + |a|(1 + |a|) + a2 = 1 + 3|a|+ 3a2.

Let ε > 0 be given and choose

δ = min

{
ε

1 + 3|a|+ 3a2
, 1

}
.

This implies that if |x− a| < δ, then

|x3 − a3| = |x− a||x2 + ax+ a2| < ε

so that
lim
x→a

x3 = a3

as required.

6. (a) Recall that f is continuous at c if and only if f(xn) converges to f(c) for any
sequence xn converging to c. Suppose now that xn converges to 2. Since 2 ∈ Q and
f(2) = 10, we must show that f(xn) → 10. Let ε > 0 and find N such that n ≥ N implies
|xn − 2| < ε. There are now two possibilities. If xn ∈ Q and n > N , then f(xn) = 5xn so
that |f(xn)−10| = |5xn−10| = 2|xn−5| < 2ε. If xn ∈ R\Q and n > N , then f(xn) = x2n+6
so that |f(xn)− 10| = |x2n + 6− 10| = |x2n− 4| = |xn− 2||xn + 2|. Since |xn− 2| < ε we know
that |xn + 2| ≤ |xn − 2|+ 4 < ε+ 4 which implies that

|f(xn)− 10| = |xn − 2||xn + 2| < ε(ε+ 4).

In either case, if n ≥ N , then we can make |f(xn) − 10| arbitrarily close to 0 proving that
f(xn)→ f(2) whenever xn → 2.

6. (b) To show that f is discontinuous at 1, we must show that there exists a sequence
xn → 1 for which f(xn) does not converge to f(1). Suppose that xn ∈ R \ Q with xn → 1.
As an example, take xn = 1− (

√
2n)−1. Since xn ∈ R \Q, we know that

f(xn) = x2n + 6→ 7.

However, since 1 ∈ Q, we know that f(1) = 5. Therefore, f(xn) does not converge to f(1)
proving that f is not continuous at 1.
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