
Solutions to Math 305 Midterm Exam #1

1. (a) If S ⊆ R is a set, then a is the supremum of S if the following two conditions hold:
(i) a ≥ s for every s ∈ S, and (ii) if a′ ≥ s for all s ∈ S, then a ≤ a′. The real number b is
the infimum of S if the following two conditions hold: (i) b ≤ s for all s ∈ S and (ii) if b′ ≤ s
for all s ∈ S, then b ≥ b′.

1. (b) The completeness axiom states the following. If S ⊆ R is a nonempty and bounded
set, then supS exists as a real number.

1. (c) Let b = inf S so that b ≤ x for every x ∈ S. Therefore, −5b ≥ −5x for all x ∈ S
implying that −5b ≥ y for all y ∈ T . Thus, −5b is an upper bound for T . To show that −5b
is the least upper bound (or supremum) of T we will show that −5b ≤ a′ for any a′ such that
a′ ≥ y for all y ∈ T . Consider such an a′. Since a′ ≥ y for all y ∈ T , we know that a′ ≥ −5x
for all x ∈ S. That is, −a′/5 ≤ x for every x ∈ S. This shows that −a′/5 is a lower bound
for S. Since b is the infimum of S we know that −a′/5 ≤ b, or equivalently a′ ≥ −5b. Hence,
supT = −5b, or equivalently, supT = −5 inf S.

2. (a) The Heine-Borel Theorem states the following. A set S ⊆ R is compact if and only
if S is closed and bounded.

2. (b) (Using the definition of compact.) In order to prove that S ∪ T is compact, we
must show that any open cover of S ∪ T contains a finite subcover. Thus, suppose that F
is an open cover of S ∪ T . Consider the collections S = F ∩ S = {F ∩ S : F ∈ F} and
T = F ∩ T = {F ∩ T : F ∈ F} so that S is an open cover of S and T is an open cover of
T . Since S is compact, there is a finite subcover of S, call it S0, that covers S. Since T is
compact, there is a finite subcover of T , call it T0, that covers T . Therefore, the collection
S0 ∪ T0 is a subcover of F which is also a finite cover of S ∪ T (since the union of a finite
number of objects is finite). Hence, any open cover of S∪T contains a finite subcover proving
that S ∪ T is compact.

2. (b) (Using the Heine-Borel Theorem.) In order to prove that S ∪ T is compact, we must
show that S ∪ T is closed and bounded. Since S is compact, we know that S is closed and
bounded, and since T is compact we know that T is closed and bounded. In order to show
that S ∪ T is bounded, we need to show that there exists some N ∈ N such that |x| ≤ N
for all x ∈ S ∪ T . Since S is bounded, we know that there exists some n ∈ N such that
|s| ≤ n for all n ∈ S, and since T is bounded, we know that there exists some m ∈ N such
that |t| ≤ m for all t ∈ T . Therefore, if we set N = m + n and let x ∈ S ∪ T , then either
x ∈ S in which case x ≤ m < N or x ∈ T in which case x ≤ n < N . If it happens that
x ∈ S ∩ T , then |x| ≤ max{n,m} < N . In any case, we see that |x| ≤ N proving that
S ∪ T is bounded. To show that S ∪ T is closed, we need to prove that the union of two
closed sets is closed. Equivalently, we need to prove that (S ∪ T )c = Sc ∩ T c is open. Since
Sc is open, we know that if s ∈ Sc, then there exists an ε1 such that N(s; ε1) ⊆ Sc, and
since T c is open, we know that if t ∈ T c, then there exists an ε2 such that N(x; ε2) ⊆ Sc.
Hence, suppose that x ∈ Sc ∩ T c and let ε = min{ε1, ε2} so that N(x; ε) ⊆ N(x; ε1) ⊆ Sc

and N(x; ε) ⊆ N(x; ε2) ⊆ T c which implies that N(x; ε) ⊆ Sc∩T c. This implies that Sc∩T c

is open so that (Sc ∩ T c)c = S ∪ T is closed.



3. (a) To show that f is not bijective, it is sufficient to show that there exist points
x1 ∈ [−2, 2] and x2 ∈ [−2, 2] with x1 6= x2 such that f(x1) = f(x2). If we take x1 = −1 and
x2 = 1, then x1 6= x2 but f(x1) = f(x2) = 1. Hence, f is not bijective.

3. (b) To show that f−1(S) is an open set, it is sufficient to show that if x ∈ f−1(S),
then there exists some ε > 0 such that N(x; ε) ⊆ f−1(S). Therefore, let x ∈ f−1(S)
so that x2 ∈ S. Consider N(x; ε) = (x − ε, x + ε). Since f(x) = x2, we know that
f(N(x; ε)) = f((x − ε, x + ε)) = ((x − ε)2, (x + ε)2). Since x2 ∈ S and S is open we
know that there exists some ε1 > 0 such that N(x2; ε1) = (x2 − ε1, x

2 + ε1) ⊆ S. Hence, the
proof will be completed if we can choose ε such that ((x− ε)2, (x + ε)2) ⊆ x2 + ε1. Observe
that (x + ε)2 = x2 + 2xε + ε2 and so we choose ε such that 2xε + ε2 < ε1.

3. (c) Observe that f−1(T c) = {x ∈ [−2, 2] : f(x) ∈ T c} = {x ∈ [−2, 2] : f(x) /∈ T}.
However, the set of x ∈ [−2, 2] such that f(x) /∈ T is, by definition, the complement of the
set of x ∈ [−2, 2] such that f(x) ∈ T . Therefore, we find

f−1(T c) = {x ∈ [−2, 2] : f(x) /∈ T} = {x ∈ [−2, 2] : f(x) ∈ T}c = [f−1(T )]c

as required.
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Suppose first that x = 0 and let ε > 0 be arbitrary. The Archimedean property implies that
there exists some m ∈ N such that 0 < 1/m < ε. Moreover, since R is complete, we know
that there exists some y ∈ R such that 0 < 1/(m + 1) < y < 1/m < ε. Thus, y ∈ S and
y ∈ N(0; ε) so that N(x; ε) ∩ S 6= ∅. Since 0 /∈ S we conclude that N(0; ε) ∩ Sc 6= ∅ so
that 0 ∈ bdS. Now assume that x = 1/n for some n ∈ N and let ε > 0 be arbitrary. Since
1/n /∈ S we conclude that N(1/n; ε) ∩ Sc 6= ∅. Since R is complete, we know that if there
exists some irrational y with
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for every ε > 0. Thus, y ∈ S and y ∈ N(1/n; ε) so that N(1/n; ε) ∩ S 6= ∅ for every ε > 0.
Hence, we have shown that {
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To show the reverse containment, suppose that x ∈ (0, 1) with x 6= 1/n for some n ∈ N. The
Archimedean property implies that there exists some m ∈ N such that 1/(m+1) < x < 1/m.
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Thus, x /∈ bdS. If x < 0, let ε = −x/2 so that N(x; ε) ∩ (0, 1) = ∅ so that x /∈ bdS. If
x > 1, let ε = (x− 1)/2 so that N(x; ε) ∩ (0, 1) = ∅ so that x /∈ bdS. Thus we have shown
that

bdS =
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5. We claim that bdS = [0, 1]. Suppose that
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For any ε > 0, we know that N(y; ε) contains irrational numbers so that N(y; ε)∩(R\S) 6= ∅.
But we know that N(y; ε) also contains some r ∈ Q such that 1/(n + 1) < r < 1/n. Thus,[
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for every n ∈ N. Observe 0 /∈ S so that we cannot immediately conclude that N(0; ε)∩S 6= ∅.
However, we knows that if ε > 0, then there exists some n such that 0 < 1/n < ε which
implies that
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Thus, N(0; ε) ∩ S 6= ∅ so that 0 ∈ bdS. Since we can write
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we conclude that [0, 1] ⊆ bdS. To show that [0, 1] = bdS, suppose that y /∈ [0, 1] so that
either y < 0 or y > 1. If y < 0, let ε = −y/2 so that N(y; ε) ∩ [0, 1] = ∅ so that y /∈ bdS.
If y > 1, let ε = (y − 1)/2 so that N(y; ε) ∩ [0, 1] = ∅ so that y /∈ bdS. Thus, if y /∈ [0, 1],
then y /∈ bdS. This implies that bdS = [0, 1].

6. We claim that S ′ = {−1/2, 1/2} so that cl S = S ∪ S ′. Observe that{
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get arbitrarily close to 1/2. Hence, we find S ′ = {−1/2, 1/2}. To prove that this is indeed
S ′, we know from the Archimedean property that for every ε > 0 there exists an n such that
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This means that for every ε > 0 we have N∗(1/2, ε)∩S 6= ∅ and N∗(−1/2, ε)∩S 6= ∅ implying
that {−1/2, 1/2} ⊆ S. On the other hand, if x > 1/2 or x < −1/2 and ε = (|x| − 1/2)/2,
then N∗(1/2, ε) ∩ S = ∅ and N∗(−1/2, ε) ∩ S = ∅. Similarly, if −1/3 < x < 2/5 and
ε = max{|2/5 − x|, | − 1/3 − x|}/2, then N∗(x, ε) ∩ S = ∅. Finally, if 2/5 ≤ x < 1/2, then
by the Archimedean property, there exists an n such that
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while if −1/2 < x < −1/3, then by the Archimedean property, there exists an n such that
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This implies that S ′ = {−1/2, 1/2}.
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