Solutions to Math 305 Midterm Exam \#1

1. (a) If $S \subseteq \mathbb{R}$ is a set, then a is the supremum of S if the following two conditions hold: (i) $a \geq s$ for every $s \in S$, and (ii) if $a^{\prime} \geq s$ for all $s \in S$, then $a \leq a^{\prime}$. The real number b is the infimum of S if the following two conditions hold: (i) $b \leq s$ for all $s \in S$ and (ii) if $b^{\prime} \leq s$ for all $s \in S$, then $b \geq b^{\prime}$.
2. (b) The completeness axiom states the following. If $S \subseteq \mathbb{R}$ is a nonempty and bounded set, then $\sup S$ exists as a real number.
3. (c) Let $b=\inf S$ so that $b \leq x$ for every $x \in S$. Therefore, $-5 b \geq-5 x$ for all $x \in S$ implying that $-5 b \geq y$ for all $y \in T$. Thus, $-5 b$ is an upper bound for T. To show that $-5 b$ is the least upper bound (or supremum) of T we will show that $-5 b \leq a^{\prime}$ for any a^{\prime} such that $a^{\prime} \geq y$ for all $y \in T$. Consider such an a^{\prime}. Since $a^{\prime} \geq y$ for all $y \in T$, we know that $a^{\prime} \geq-5 x$ for all $x \in S$. That is, $-a^{\prime} / 5 \leq x$ for every $x \in S$. This shows that $-a^{\prime} / 5$ is a lower bound for S. Since b is the infimum of S we know that $-a^{\prime} / 5 \leq b$, or equivalently $a^{\prime} \geq-5 b$. Hence, $\sup T=-5 b$, or equivalently, $\sup T=-5 \inf S$.
4. (a) The Heine-Borel Theorem states the following. A set $S \subseteq \mathbb{R}$ is compact if and only if S is closed and bounded.
5. (b) (Using the definition of compact.) In order to prove that $S \cup T$ is compact, we must show that any open cover of $S \cup T$ contains a finite subcover. Thus, suppose that \mathcal{F} is an open cover of $S \cup T$. Consider the collections $\mathcal{S}=\mathcal{F} \cap S=\{F \cap S: F \in \mathcal{F}\}$ and $\mathcal{T}=\mathcal{F} \cap T=\{F \cap T: F \in \mathcal{F}\}$ so that \mathcal{S} is an open cover of S and \mathcal{T} is an open cover of T. Since S is compact, there is a finite subcover of \mathcal{S}, call it \mathcal{S}_{0}, that covers S. Since T is compact, there is a finite subcover of \mathcal{T}, call it \mathcal{T}_{0}, that covers T. Therefore, the collection $\mathcal{S}_{0} \cup \mathcal{T}_{0}$ is a subcover of \mathcal{F} which is also a finite cover of $S \cup T$ (since the union of a finite number of objects is finite). Hence, any open cover of $S \cup T$ contains a finite subcover proving that $S \cup T$ is compact.
6. (b) (Using the Heine-Borel Theorem.) In order to prove that $S \cup T$ is compact, we must show that $S \cup T$ is closed and bounded. Since S is compact, we know that S is closed and bounded, and since T is compact we know that T is closed and bounded. In order to show that $S \cup T$ is bounded, we need to show that there exists some $N \in \mathbb{N}$ such that $|x| \leq N$ for all $x \in S \cup T$. Since S is bounded, we know that there exists some $n \in \mathbb{N}$ such that $|s| \leq n$ for all $n \in S$, and since T is bounded, we know that there exists some $m \in \mathbb{N}$ such that $|t| \leq m$ for all $t \in T$. Therefore, if we set $N=m+n$ and let $x \in S \cup T$, then either $x \in S$ in which case $x \leq m<N$ or $x \in T$ in which case $x \leq n<N$. If it happens that $x \in S \cap T$, then $|x| \leq \max \{n, m\}<N$. In any case, we see that $|x| \leq N$ proving that $S \cup T$ is bounded. To show that $S \cup T$ is closed, we need to prove that the union of two closed sets is closed. Equivalently, we need to prove that $(S \cup T)^{c}=S^{c} \cap T^{c}$ is open. Since S^{c} is open, we know that if $s \in S^{c}$, then there exists an ε_{1} such that $N\left(s ; \varepsilon_{1}\right) \subseteq S^{c}$, and since T^{c} is open, we know that if $t \in T^{c}$, then there exists an ε_{2} such that $N\left(x ; \varepsilon_{2}\right) \subseteq S^{c}$. Hence, suppose that $x \in S^{c} \cap T^{c}$ and let $\varepsilon=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ so that $N(x ; \varepsilon) \subseteq N\left(x ; \varepsilon_{1}\right) \subseteq S^{c}$ and $N(x ; \varepsilon) \subseteq N\left(x ; \varepsilon_{2}\right) \subseteq T^{c}$ which implies that $N(x ; \varepsilon) \subseteq S^{c} \cap T^{c}$. This implies that $S^{c} \cap T^{c}$ is open so that $\left(S^{c} \cap T^{c}\right)^{c}=S \cup T$ is closed.
7. (a) To show that f is not bijective, it is sufficient to show that there exist points $x_{1} \in[-2,2]$ and $x_{2} \in[-2,2]$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. If we take $x_{1}=-1$ and $x_{2}=1$, then $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)=1$. Hence, f is not bijective.
8. (b) To show that $f^{-1}(S)$ is an open set, it is sufficient to show that if $x \in f^{-1}(S)$, then there exists some $\varepsilon>0$ such that $N(x ; \varepsilon) \subseteq f^{-1}(S)$. Therefore, let $x \in f^{-1}(S)$ so that $x^{2} \in S$. Consider $N(x ; \varepsilon)=(x-\varepsilon, x+\varepsilon)$. Since $f(x)=x^{2}$, we know that $f(N(x ; \varepsilon))=f((x-\varepsilon, x+\varepsilon))=\left((x-\varepsilon)^{2},(x+\varepsilon)^{2}\right)$. Since $x^{2} \in S$ and S is open we know that there exists some $\varepsilon_{1}>0$ such that $N\left(x^{2} ; \varepsilon_{1}\right)=\left(x^{2}-\varepsilon_{1}, x^{2}+\varepsilon_{1}\right) \subseteq S$. Hence, the proof will be completed if we can choose ε such that $\left((x-\varepsilon)^{2},(x+\varepsilon)^{2}\right) \subseteq x^{2}+\varepsilon_{1}$. Observe that $(x+\varepsilon)^{2}=x^{2}+2 x \varepsilon+\varepsilon^{2}$ and so we choose ε such that $2 x \varepsilon+\varepsilon^{2}<\varepsilon_{1}$.
9. (c) Observe that $f^{-1}\left(T^{c}\right)=\left\{x \in[-2,2]: f(x) \in T^{c}\right\}=\{x \in[-2,2]: f(x) \notin T\}$. However, the set of $x \in[-2,2]$ such that $f(x) \notin T$ is, by definition, the complement of the set of $x \in[-2,2]$ such that $f(x) \in T$. Therefore, we find

$$
f^{-1}\left(T^{c}\right)=\{x \in[-2,2]: f(x) \notin T\}=\{x \in[-2,2]: f(x) \in T\}^{c}=\left[f^{-1}(T)\right]^{c}
$$

as required.
4. We claim that

$$
\operatorname{bd} S=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}
$$

Suppose first that $x=0$ and let $\varepsilon>0$ be arbitrary. The Archimedean property implies that there exists some $m \in \mathbb{N}$ such that $0<1 / m<\varepsilon$. Moreover, since \mathbb{R} is complete, we know that there exists some $y \in \mathbb{R}$ such that $0<1 /(m+1)<y<1 / m<\varepsilon$. Thus, $y \in S$ and $y \in N(0 ; \varepsilon)$ so that $N(x ; \varepsilon) \cap S \neq \emptyset$. Since $0 \notin S$ we conclude that $N(0 ; \varepsilon) \cap S^{c} \neq \emptyset$ so that $0 \in \operatorname{bd} S$. Now assume that $x=1 / n$ for some $n \in \mathbb{N}$ and let $\varepsilon>0$ be arbitrary. Since $1 / n \notin S$ we conclude that $N(1 / n ; \varepsilon) \cap S^{c} \neq \emptyset$. Since \mathbb{R} is complete, we know that if there exists some irrational y with

$$
y \in\left\{x \in \mathbb{R}: \frac{1}{n}-\varepsilon<x<\frac{1}{n}+\varepsilon\right\}=\left[\frac{1}{n}-\varepsilon, \frac{1}{n}+\varepsilon\right]
$$

for every $\varepsilon>0$. Thus, $y \in S$ and $y \in N(1 / n ; \varepsilon)$ so that $N(1 / n ; \varepsilon) \cap S \neq \emptyset$ for every $\varepsilon>0$. Hence, we have shown that

$$
\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\} \subseteq \operatorname{bd} S
$$

To show the reverse containment, suppose that $x \in(0,1)$ with $x \neq 1 / n$ for some $n \in \mathbb{N}$. The Archimedean property implies that there exists some $m \in \mathbb{N}$ such that $1 /(m+1)<x<1 / m$. If we set

$$
\varepsilon=\frac{1}{2}\left(\frac{1}{m}-\frac{1}{m+1}\right)=\frac{1}{2 m(m+1)}
$$

then

$$
N(x ; \varepsilon) \cap\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\emptyset
$$

Thus, $x \notin \operatorname{bd} S$. If $x<0$, let $\varepsilon=-x / 2$ so that $N(x ; \varepsilon) \cap(0,1)=\emptyset$ so that $x \notin \operatorname{bd} S$. If $x>1$, let $\varepsilon=(x-1) / 2$ so that $N(x ; \varepsilon) \cap(0,1)=\emptyset$ so that $x \notin \mathrm{bd} S$. Thus we have shown that

$$
\operatorname{bd} S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\} .
$$

5. We claim that bd $S=[0,1]$. Suppose that

$$
y \in\left\{x \in \mathbb{R}: \frac{1}{n+1} \leq x \leq \frac{1}{n}\right\}=\left[\frac{1}{n+1}, \frac{1}{n}\right] .
$$

For any $\varepsilon>0$, we know that $N(y ; \varepsilon)$ contains irrational numbers so that $N(y ; \varepsilon) \cap(\mathbb{R} \backslash S) \neq \emptyset$. But we know that $N(y ; \varepsilon)$ also contains some $r \in \mathbb{Q}$ such that $1 /(n+1)<r<1 / n$. Thus,

$$
\left[\frac{1}{n+1}, \frac{1}{n}\right] \subseteq \operatorname{bd} S
$$

for every $n \in \mathbb{N}$. Observe $0 \notin S$ so that we cannot immediately conclude that $N(0 ; \varepsilon) \cap S \neq \emptyset$. However, we knows that if $\varepsilon>0$, then there exists some n such that $0<1 / n<\varepsilon$ which implies that

$$
N(0 ; \varepsilon) \cap\left[\frac{1}{n+1}, \frac{1}{n}\right] \neq \emptyset
$$

Thus, $N(0 ; \varepsilon) \cap S \neq \emptyset$ so that $0 \in \operatorname{bd} S$. Since we can write

$$
[0,1]=\{0\} \cup \bigcup_{n \in \mathbb{N}}\left[\frac{1}{n+1}, \frac{1}{n}\right]
$$

we conclude that $[0,1] \subseteq \mathrm{bd} S$. To show that $[0,1]=\mathrm{bd} S$, suppose that $y \notin[0,1]$ so that either $y<0$ or $y>1$. If $y<0$, let $\varepsilon=-y / 2$ so that $N(y ; \varepsilon) \cap[0,1]=\emptyset$ so that $y \notin \operatorname{bd} S$. If $y>1$, let $\varepsilon=(y-1) / 2$ so that $N(y ; \varepsilon) \cap[0,1]=\emptyset$ so that $y \notin \operatorname{bd} S$. Thus, if $y \notin[0,1]$, then $y \notin \mathrm{bd} S$. This implies that $\mathrm{bd} S=[0,1]$.
6. We claim that $S^{\prime}=\{-1 / 2,1 / 2\}$ so that $\mathrm{cl} S=S \cup S^{\prime}$. Observe that

$$
\left\{\frac{n}{2 n+1}: n \in \mathbb{N}\right\}=\left\{\frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \ldots\right\}
$$

so that the terms get arbitrarily close to $1 / 2$. Therefore,

$$
\left\{(-1)^{n} \frac{n}{2 n+1}: n \in \mathbb{N}\right\}=\left\{-\frac{1}{3}, \frac{2}{5},-\frac{3}{7}, \frac{4}{9}, \ldots\right\}=\left\{-\frac{1}{3},-\frac{3}{7}, \ldots\right\} \cup\left\{\frac{2}{5}, \frac{4}{9}, \ldots\right\} .
$$

The terms in

$$
\left\{-\frac{1}{3},-\frac{3}{7}, \ldots\right\}
$$

get arbitrarily close to $-1 / 2$ while the terms in

$$
\left\{\frac{2}{5}, \frac{4}{9}, \ldots\right\}
$$

get arbitrarily close to $1 / 2$. Hence, we find $S^{\prime}=\{-1 / 2,1 / 2\}$. To prove that this is indeed S^{\prime}, we know from the Archimedean property that for every $\varepsilon>0$ there exists an n such that

$$
\frac{1}{2}-\varepsilon<\frac{n}{2 n+1}<\frac{1}{2} \quad \text { and } \quad-\frac{1}{2}<-\frac{n}{2 n+1}<-\frac{1}{2}+\varepsilon .
$$

This means that for every $\varepsilon>0$ we have $N^{*}(1 / 2, \varepsilon) \cap S \neq \emptyset$ and $N^{*}(-1 / 2, \varepsilon) \cap S \neq \emptyset$ implying that $\{-1 / 2,1 / 2\} \subseteq S$. On the other hand, if $x>1 / 2$ or $x<-1 / 2$ and $\varepsilon=(|x|-1 / 2) / 2$, then $N^{*}(1 / 2, \varepsilon) \cap S=\emptyset$ and $N^{*}(-1 / 2, \varepsilon) \cap S=\emptyset$. Similarly, if $-1 / 3<x<2 / 5$ and $\varepsilon=\max \{|2 / 5-x|,|-1 / 3-x|\} / 2$, then $N^{*}(x, \varepsilon) \cap S=\emptyset$. Finally, if $2 / 5 \leq x<1 / 2$, then by the Archimedean property, there exists an n such that

$$
\frac{n}{2 n+1}<x<\frac{n+2}{2(n+2)+1},
$$

while if $-1 / 2<x<-1 / 3$, then by the Archimedean property, there exists an n such that

$$
-\frac{n+2}{2(n+2)+1}<x<-\frac{n}{2 n+1} .
$$

This implies that $S^{\prime}=\{-1 / 2,1 / 2\}$.

