Math 305 Fall 2011
Solutions to Assignment \#1
2. To prove that $\left(A^{c}\right)^{c}=A$, we need to verify the two containments $\left(A^{c}\right)^{c} \subseteq A$ and $A \subseteq\left(A^{c}\right)^{c}$. We will begin by showing that $\left(A^{c}\right)^{c} \subseteq A$. Suppose that $x \in\left(A^{c}\right)^{c}$. By definition of complement, this means that $x \notin\left(A^{c}\right)$. But this says precisely that x is not in A^{c} which, by the definition of complement again, means exactly that x is in A. In other words, $x \in A$. To show the containment $A \subseteq\left(A^{c}\right)^{c}$, assume that $x \in A$. By the definition of complement, this means that x is not in A^{c}. In other words, $x \notin A^{c}$ so that $x \in\left(A^{c}\right)^{c}$.
3. (a) The proof of the distribution law $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ is outlined in Practice Problem 5.14 on page 43 . The solution written out in full detail is on page 46.
(b) One proof that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ is to follow the same strategy as in (a) by showing the two required containments. Another proof that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ can be given using de Morgan's law for two sets (as proved in class on September 8, 2011, or see Problem $\# 5$ below) and the result of Problem \#2. That is, if we replace A by A^{c} and B by B^{c} and C by C^{c} in part (a), then we obtain

$$
A^{c} \cup\left(B^{c} \cap C^{c}\right)=\left(A^{c} \cup B^{c}\right) \cap\left(A^{c} \cup C^{c}\right)
$$

Taking complements of both sides gives

$$
\left[A^{c} \cup\left(B^{c} \cap C^{c}\right)\right]^{c}=\left[\left(A^{c} \cup B^{c}\right) \cap\left(A^{c} \cup C^{c}\right)\right]^{c}
$$

which by de Morgan's law is equivalent to

$$
\left(A^{c}\right)^{c} \cap\left(B^{c} \cap C^{c}\right)^{c}=\left(A^{c} \cup B^{c}\right)^{c} \cup\left(A^{c} \cup C^{c}\right)^{c} .
$$

Using de Morgan's law three more times shows this is equivalent to

$$
\left(A^{c}\right)^{c} \cap\left[\left(B^{c}\right)^{c} \cup\left(C^{c}\right)^{c}\right]=\left[\left(A^{c}\right)^{c} \cap\left(B^{c}\right)^{c}\right] \cup\left[\left(A^{c}\right)^{c} \cap\left(C^{c}\right)^{c}\right] .
$$

Finally, Problem \#2 implies this is equivalent to

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

as required.
4. Recall that the definition of $A \backslash B$ as given in class was

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\} .
$$

Notice, however, that this is exactly the same as the set $A \cap B^{c}$. Therefore,

$$
(A \backslash B) \cup(A \cap B) \cup(B \backslash A)=\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(B \cap A^{c}\right)
$$

We are now going to use the distribution law twice. Observe first that

$$
\left(A \cap B^{c}\right) \cup(A \cap B)=A \cap\left(B \cup B^{c}\right)=A
$$

Thus, we can substitute this expression into the previous expression to conclude that

$$
\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(B \cap A^{c}\right)=A \cup\left(B \cap A^{c}\right) .
$$

The distribution law now implies that

$$
A \cup\left(B \cap A^{c}\right)=(A \cup B) \cap\left(A \cup A^{c}\right)=A \cup B .
$$

In summary, we have shown that

$$
(A \backslash B) \cup(A \cap B) \cup(B \backslash A)=A \cup B
$$

as required.
5. In order to prove that

$$
\left(\bigcup_{j \in J} A_{j}\right)^{c}=\bigcap_{j \in J}\left(A_{j}^{c}\right)
$$

we will show the two separate containments. To begin, suppose that

$$
x \in\left(\bigcup_{j \in J} A_{j}\right)^{c}
$$

so that by the definition of complement we conclude that

$$
x \notin \bigcup_{j \in J} A_{j} .
$$

But this is the same as saying that x does not below to any one of the sets A_{j} for $j \in J$. That is, $x \in\left(A_{j}\right)^{c}$ for every $j \in J$ so by the definition of intersection, we conclude

$$
x \in \bigcap_{j \in J}\left(A_{j}^{c}\right)
$$

On the other hand, if

$$
x \in \bigcap_{j \in J}\left(A_{j}^{c}\right),
$$

then $x \in A_{j}^{c}$ for every $j \in J$ which by the definition of complement means that $x \notin A_{j}$ for any $j \in J$. But, by the definition of union, this is exactly the same as saying that

$$
x \notin \bigcup_{j \in J} A_{j} .
$$

In other words,

$$
x \in\left(\bigcup_{j \in J} A_{j}\right)^{c}
$$

and the proof is complete.
6. I am just going to give the answers. You should still prove that the two sets are equal.
(a) $\bigcup_{B \in \mathcal{B}} B=[1,2]$ and $\bigcap_{B \in \mathcal{B}} B=\{1\}$.
(b) $\bigcup_{B \in \mathcal{B}} B=(1,2)$ and $\bigcap_{B \in \mathcal{B}} B=\emptyset$. Note that $(1,1)=\emptyset$.
(c) $\bigcup_{B \in \mathcal{B}} B=[2, \infty)$ and $\bigcap_{B \in \mathcal{B}} B=\{2\}$.
(d) $\bigcup_{B \in \mathcal{B}} B=[0,5)$ and $\bigcap_{B \in \mathcal{B}} B=[2,3]$.

