Stat 296 Fall 2007 Solutions to Assignment #2

Exercise	e 2, page	e 73 : Sin	ce there a	re 3 data p	points for	treatment	$\pm \#1$ and 3	data	points for	treatment	#2,
the total	number	of possib	le permute	d samples	is $\frac{6!}{3!3!} = 2$	20. We ca	in list then	n all a	s follows:		

Permuted Sample	Treatment 1	Treatment 2	Difference of means			
1	$10 \ 12 \ 15$	$17 \ 19 \ 50$	-16.33333			
2	$10 \ 12 \ 17$	$15 \ 19 \ 50$	-15			
3	$10 \ 12 \ 19$	$15 \ 17 \ 50$	-13.66667			
4	$10 \ 12 \ 50$	$15 \ 17 \ 19$	7			
5	$10\ 15\ 17$	$12 \ 19 \ 50$	-13			
6	$10 \ 15 \ 19$	$12 \ 17 \ 50$	-11.66667			
7*	$10 \ 15 \ 50$	$12 \ 17 \ 19$	9			
8	$10\ 17\ 19$	$12 \ 15 \ 50$	-10.33333			
9	$10\ 17\ 50$	$12 \ 15 \ 19$	10.33333			
10	$10 \ 19 \ 50$	$12 \ 15 \ 17$	11.66667			
11	$12 \ 15 \ 17$	$10 \ 19 \ 50$	-11.66667			
12	$12 \ 15 \ 19$	$10\ 17\ 50$	-10.33333			
13	$12 \ 15 \ 50$	$10\ 17\ 19$	10.33333			
14	$12 \ 17 \ 19$	$10 \ 15 \ 50$	-9			
15	$12 \ 17 \ 50$	$10 \ 15 \ 19$	11.66667			
16	$12 \ 19 \ 50$	$10 \ 15 \ 17$	13			
17	$15 \ 17 \ 19$	$10 \ 12 \ 50$	-7			
18	$15 \ 17 \ 50$	$10 \ 12 \ 19$	13.66667			
19	$15 \ 19 \ 50$	$10\ 12\ 17$	15			
20	$17 \ 19 \ 50$	$10 \ 12 \ 15$	16.33333			
*observed sample						

Suppose that μ_1 denotes the true mean for Treatment #1 and that μ_2 denotes the true mean for Treatment #2. If we are interested in testing $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 > \mu_2$, then since the observed difference of means was 9, and since there are 9 permuted differences greater than or equal to 9, we conclude that the one-sided *p*-value is $\frac{9}{20} = 0.45$. Hence, there is not nearly enough evidence to reject H_0 .

Exercise 3, pag	e 73 :	As in	Exercise 2,	there are	20 possible	permuted	samples.
-----------------	---------------	-------	-------------	-----------	-------------	----------	----------

Permuted Sample	Treatment 1	Treatment 2	Difference of medians			
1	10 12 15	$17 \ 19 \ 50$	-7			
2	$10 \ 12 \ 17$	15 19 50	-7			
3	$10 \ 12 \ 19$	$15 \ 17 \ 50$	-5			
4	$10 \ 12 \ 50$	$15 \ 17 \ 19$	-5			
5	$10\ 15\ 17$	$12 \ 19 \ 50$	-4			
6	$10 \ 15 \ 19$	$12 \ 17 \ 50$	-2			
7^*	$10 \ 15 \ 50$	$12 \ 17 \ 19$	-2			
8	$10\ 17\ 19$	$12 \ 15 \ 50$	2			
9	$10\ 17\ 50$	$12 \ 15 \ 19$	2			
10	$10 \ 19 \ 50$	$12 \ 15 \ 17$	4			
11	$12 \ 15 \ 17$	$10 \ 19 \ 50$	-4			
12	$12 \ 15 \ 19$	$10\ 17\ 50$	-2			
13	$12 \ 15 \ 50$	$10\ 17\ 19$	-2			
14	$12 \ 17 \ 19$	$10 \ 15 \ 50$	2			
15	$12 \ 17 \ 50$	$10 \ 15 \ 19$	2			
16	$12 \ 19 \ 50$	$10 \ 15 \ 17$	4			
17	$15 \ 17 \ 19$	$10 \ 12 \ 50$	5			
18	$15 \ 17 \ 50$	$10 \ 12 \ 19$	5			
19	$15 \ 19 \ 50$	$10 \ 12 \ 17$	7			
20	$17 \ 19 \ 50$	$10 \ 12 \ 15$	7			
*observed						

If we are interested in testing $H_0: \theta_{0.5}^1 = \theta_{0.5}^2$ vs. $H_A: \theta_{0.5}^1 > \theta_{0.5}^2$, then since the observed difference of medians was -2, and since there are 14 permuted differences greater than or equal to -2, we conclude that the one-sided *p*-value is $\frac{14}{20} = 0.70$. Hence, there is not nearly enough evidence to reject H_0 .

Exercise 4, page 73: Suppose that μ_1 denotes carapace lengths (in mm) of crayfish from Section 1 of a stream in Kansas, and suppose that μ_2 denotes carapace lengths (in mm) of crayfish from Section 2 of a stream in Kansas. Consider testing the hypotheses $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 \neq \mu_2$.

(a) Using SAS to perform the permutation test, we find a *p*-value of 0.0238. Hence, at the $\alpha = 0.05$ level, we would reject H_0 , and conclude that there is significant evidence to conclude that carapace lengths differ between sections.

(b) Using SAS to perform the Wilcoxon rank-sum test, we find a *p*-value of 0.0303. Hence, at the $\alpha = 0.05$ level, we would reject H_0 , and conclude that there is significant evidence to conclude that carapace lengths differ between sections.

If, instead, you decided to use $H_A: \mu_1 > \mu_2$, then the appropriate *p*-value for (a) is 0.0152 and for (b) is 0.0152.

52.0000

-2.1567

0.0155

0.0310

0.0152

0.0238

data carapace; input Section Length; datalines; 15 1 11 1 16 18 1 12 2 17 2 14 2 15 2 21 2 19 2 13 ; run; proc npar1way data=carapace anova scores=data; class section; exact scores=data; var length; run; The NPAR1WAY Procedure Data Scores Two-Sample Test Statistic (S) Normal Approximation Ζ One-Sided Pr < Z Two-Sided Pr > |Z|Exact Test One-Sided Pr <= S Two-Sided Pr >= |S - Mean|

proc npar1way data=carapace wilcoxon correct=no; class section; exact wilcoxon; var length; run;

> The NPAR1WAY Procedure Wilcoxon Two-Sample Test

Statistic (S)	18.0000
Normal Approximation	
Z	-2.1909
One-Sided Pr < Z	0.0142
Two-Sided Pr > Z	0.0285
t Approximation	
One-Sided Pr < Z	0.0266
Two-Sided Pr > Z	0.0533
Exact Test	
One-Sided Pr <= S	0.0152
Two-Sided Pr >= S - Mean	0.0303

Exercise 5, page 73: Suppose that μ_1 denotes nest heights (in metres) of species A of woodland nesting birds, and that μ_2 denotes nest heights (in metres) of species B of woodland nesting birds. Consider testing the hypotheses $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 \neq \mu_2$. Using SAS to perform a Wilcoxon rank-sum test gives a *p*-value of 0.0556. At the $\alpha = 0.05$ level we would not reject H_0 , but at the $\alpha = 0.06$ level we would reject H_0 . It is up to you to decide if this is significant or not. If, instead, the alternative is $H_A: \mu_1 > \mu_2$, then the corresponding *p*-value is 0.0278.

```
data nesting;
input Species$ Height;
datalines;
A 5.1
A 9.4
A 7.2
A 8.1
A 8.8
B 2.5
B 4.2
B 6.9
B 5.5
B 5.3
;
run;
proc npar1way data=nesting wilcoxon correct=no;
class Species;
exact wilcoxon;
var Height;
run;
```

The NPAR1WAY Procedure Wilcoxon Two-Sample Test

Statistic (S)	37.0000
Normal Approximation	
Z	1.9845
One-Sided Pr > Z	0.0236
Two-Sided Pr > Z	0.0472
t Approximation	
One-Sided Pr > Z	0.0392
Two-Sided Pr > Z	0.0785
Exact Test	
One-Sided Pr >= S	0.0278
Two-Sided Pr >= S - Mean	0.0556

Exercise 7, page 74: Suppose that μ_1 denotes the number of siblings that students in an introductory statistics class whose hometown is rural have, and let μ_2 denote the number of siblings that students in an introductory statistics class whose hometown is urban have. Consider testing the hypotheses $H_0: \mu_1 = \mu_2$ vs. $H_A: \mu_1 \neq \mu_2$.

(a) Using SAS to perform the Wilcoxon rank-sum test, we find a *p*-value of 0.0010. Hence, at the $\alpha = 0.01$ level, we would reject H_0 , and conclude that there is overwhelming evidence to conclude that the number of siblings differs between urban students and rural students. If, instead, you decided to use $H_A: \mu_1 > \mu_2$, then the appropriate *p*-value is 0.0004144.

(b) In order to conduct the two sample *t*-test, we begin by calculating $\overline{X_1} = 2.0417$, $S_1 = 1.3345$ and $\overline{X_2} = 1.2353$, $S_2 = 1.8210$, and noting that sample size 1 is m = 24 and sample size 2 is n = 17. This gives a test statistic of

$$T = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{1/n + 1/m}\sqrt{\frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2}}} = \frac{2.0417 - 1.2353}{\sqrt{1/17 + 1/24}\sqrt{\frac{23(1.3345)^2 + 16(1.8210)^2}{39}}} = 1.639$$

Using t-table with df = 39 (use the normal table instead), we find a test statistic of 1.639 corresponds to a two-sided p-value of $2 \times 0.0505 = 0.101$. This is not very significant evidence against H_0 . The result is so different than (a) primarily because of the outlier 8 in the urban group. This skews the data tremendously and suggests that the assumption of approximate normality that the t-test requires is violated. Hence, in this example, the t-test result is invalid.

data siblings; input Hometown\$ Number; datalines; RЗ R 2 R 1 R 1 R 2 R 1 RЗ R 2 R 2 R 2 R 2 R 5 R 1 R 4

R 1 R 1 R 1 R 1 R 6 R 2 R 2 R 2 R 1 R 1 U 1 U 0 U 1 U 1 U 0 UΟ U 1 U 1 U 1 U 8 U 1 U 1 U 1 U 0 U 1 U 1 U 2 ; run; proc npar1way data=siblings wilcoxon correct=no; class Hometown; exact wilcoxon; var Number; run; The NPAR1WAY Procedure Wilcoxon Two-Sample Test 246.5000 Statistic (S) Normal Approximation -3.1707 Ζ One-Sided Pr < Z 0.0008 Two-Sided Pr > |Z| 0.0015 t Approximation One-Sided Pr < Z 0.0015 Two-Sided Pr > |Z| 0.0029

> Exact Test One-Sided Pr <= S 4.144E-04 Two-Sided Pr >= |S - Mean| 0.0010

Exercise 8, page 74: If we perform the permutation test on the data in Exercise 7, then the *p*-value that SAS outputs for the two-sided test is 0.1131. This is quite close to the *t*-test approximation in 7(b). Statistical theory suggests that for large samples under appropriate conditions, the permutation test and the *t*-test will give essentially the same *p*-value. This example suggests such a fact.

proc npar1way data=siblings anova scores=data; class Hometown; exact scores=data; var Number; run;

> The NPAR1WAY Procedure Data Scores Two-Sample Test

Statistic (S)	21.0000
Normal Approximation Z One-Sided Pr < Z Two-Sided Pr > Z	-1.6049 0.0543 0.1085
Exact Test One-Sided Pr <= S Two-Sided Pr >= S - Mean	0.0637 0.1131