Stat 296 Fall 2007
Solutions to Assignment \#2
Exercise 2, page 73: Since there are 3 data points for treatment $\# 1$ and 3 data points for treatment \#2, the total number of possible permuted samples is $\frac{6!}{3!3!}=20$. We can list them all as follows:

Permuted Sample	Treatment 1	Treatment 2	Difference of means
1	101215	171950	-16.33333
2	101217	151950	-15
3	101219	151750	-13.66667
4	101250	151719	7
5	101517	121950	-13
6	101519	121750	-11.66667
7^{*}	101550	121719	9
8	101719	121550	-10.33333
9	101750	121519	10.33333
10	101950	121517	11.66667
11	121517	101950	-11.66667
12	121519	101750	-10.33333
13	121550	101719	10.33333
14	121719	101550	-9
15	121750	101519	11.66667
16	121950	101517	13
17	151719	101250	-7
18	151750	101219	13.66667
19	151950	101217	15
20	171950	101215	16.33333
*observed sample			

Suppose that μ_{1} denotes the true mean for Treatment \#1 and that μ_{2} denotes the true mean for Treatment \#2. If we are interested in testing $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{A}: \mu_{1}>\mu_{2}$, then since the observed difference of means was 9 , and since there are 9 permuted differences greater than or equal to 9 , we conclude that the one-sided p-value is $\frac{9}{20}=0.45$. Hence, there is not nearly enough evidence to reject H_{0}.

Exercise 3, page 73: As in Exercise 2, there are 20 possible permuted samples.

Permuted Sample	Treatment 1	Treatment 2	Difference of medians
1	101215	171950	-7
2	101217	151950	-7
3	101219	151750	-5
4	101250	151719	-5
5	101517	121950	-4
6	101519	121750	-2
$7{ }^{*}$	101550	121719	-2
8	101719	121550	2
9	101750	121519	2
10	101950	121517	4
11	121517	101950	-4
12	121519	101750	-2
13	121550	101719	-2
14	121719	101550	2
15	121750	101519	2
16	121950	101517	4
17	151719	101250	5
18	151750	101219	5
19	151950	101217	7
20	171950	101215	7
*observed			

If we are interested in testing $H_{0}: \theta_{0.5}^{1}=\theta_{0.5}^{2}$ vs. $H_{A}: \theta_{0.5}^{1}>\theta_{0.5}^{2}$, then since the observed difference of medians was -2 , and since there are 14 permuted differences greater than or equal to -2 , we conclude that the one-sided p-value is $\frac{14}{20}=0.70$. Hence, there is not nearly enough evidence to reject H_{0}.

Exercise 4, page 73: Suppose that μ_{1} denotes carapace lengths (in mm) of crayfish from Section 1 of a stream in Kansas, and suppose that μ_{2} denotes carapace lengths (in mm) of crayfish from Section 2 of a stream in Kansas. Consider testing the hypotheses $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{A}: \mu_{1} \neq \mu_{2}$.
(a) Using SAS to perform the permutation test, we find a p-value of 0.0238 . Hence, at the $\alpha=0.05$ level, we would reject H_{0}, and conclude that there is significant evidence to conclude that carapace lengths differ between sections.
(b) Using SAS to perform the Wilcoxon rank-sum test, we find a p-value of 0.0303 . Hence, at the $\alpha=0.05$ level, we would reject H_{0}, and conclude that there is significant evidence to conclude that carapace lengths differ between sections.

If, instead, you decided to use $H_{A}: \mu_{1}>\mu_{2}$, then the appropriate p-value for (a) is 0.0152 and for (b) is 0.0152 .

```
data carapace;
input Section Length;
datalines;
1 5
11
116
18
112
217
214
2 15
2 21
2 19
213
;
run;
proc npar1way data=carapace anova scores=data;
class section;
exact scores=data;
var length;
run;
```

The NPAR1WAY Procedure		
Statistic (S)	52.0000	
Normal Approximation		
Z	-2.1567	
One-Sided $\mathrm{Pr}<\mathrm{Z}$	0.0155	
Two-Sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.0310	
Exact Test		
One-Sided Pr <= S	0.0152	
Two-Sided Pr >= \|S - Mean		0.0238

```
proc npar1way data=carapace wilcoxon correct=no;
class section;
exact wilcoxon;
var length;
run;
```

The NPAR1WAY Procedure	
Wilcoxon Two-Sample Test	

Exercise 5, page 73: Suppose that μ_{1} denotes nest heights (in metres) of species A of woodland nesting birds, and that μ_{2} denotes nest heights (in metres) of species B of woodland nesting birds. Consider testing the hypotheses $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{A}: \mu_{1} \neq \mu_{2}$. Using SAS to perform a Wilcoxon rank-sum test gives a p-value of 0.0556 . At the $\alpha=0.05$ level we would not reject H_{0}, but at the $\alpha=0.06$ level we would reject H_{0}. It is up to you to decide if this is significant or not. If, instead, the alternative is $H_{A}: \mu_{1}>\mu_{2}$, then the corresponding p-value is 0.0278 .

```
data nesting;
input Species$ Height;
datalines;
A 5.1
A }9.
A }7.
A }8.
A }8.
B 2.5
B 4.2
B }6.
B }5.
B 5.3
;
run;
proc npar1way data=nesting wilcoxon correct=no;
class Species;
exact wilcoxon;
var Height;
run;
```


The NPAR1WAY Procedure Wilcoxon Two-Sample Test

Statistic (S)	37.0000	
Normal Approximation		
Z	1.9845	
One-Sided $\mathrm{Pr}>\mathrm{Z}$	0.0236	
Two-Sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.0472	
t Approximation		
One-Sided $\mathrm{Pr}>\mathrm{Z}$	0.0392	
Two-Sided Pr > \|Z		0.0785
Exact Test		
One-Sided Pr >= S	0.0278	
Two-Sided Pr >= \|S - Mean		0.0556

Exercise 7, page 74: Suppose that μ_{1} denotes the number of siblings that students in an introductory statistics class whose hometown is rural have, and let μ_{2} denote the number of siblings that students in an introductory statistics class whose hometown is urban have. Consider testing the hypotheses $H_{0}: \mu_{1}=\mu_{2}$ vs. $H_{A}: \mu_{1} \neq \mu_{2}$.
(a) Using SAS to perform the Wilcoxon rank-sum test, we find a p-value of 0.0010 . Hence, at the $\alpha=0.01$ level, we would reject H_{0}, and conclude that there is overwhelming evidence to conclude that the number of siblings differs between urban students and rural students. If, instead, you decided to use $H_{A}: \mu_{1}>\mu_{2}$, then the appropriate p-value is 0.0004144 .
(b) In order to conduct the two sample t-test, we begin by calculating $\overline{X_{1}}=2.0417, S_{1}=1.3345$ and $\overline{X_{2}}=1.2353, S_{2}=1.8210$, and noting that sample size 1 is $m=24$ and sample size 2 is $n=17$. This gives a test statistic of

$$
T=\frac{\overline{X_{1}}-\overline{X_{2}}}{\sqrt{1 / n+1 / m} \sqrt{\frac{(m-1) S_{1}^{2}+(n-1) S_{2}^{2}}{m+n-2}}}=\frac{2.0417-1.2353}{\sqrt{1 / 17+1 / 24} \sqrt{\frac{23(1.3345)^{2}+16(1.8210)^{2}}{39}}}=1.639
$$

Using t-table with $d f=39$ (use the normal table instead), we find a test statistic of 1.639 corresponds to a two-sided p-value of $2 \times 0.0505=0.101$. This is not very significant evidence against H_{0}. The result is so different than (a) primarily because of the outlier 8 in the urban group. This skews the data tremendously and suggests that the assumption of approximate normality that the t-test requires is violated. Hence, in this example, the t-test result is invalid.

```
data siblings;
input Hometown$ Number;
datalines;
R 3
R 2
R 1
R 1
R 2
R 1
R 3
R 2
R 2
R 2
R 2
R 5
R 1
R 4
```

```
R 1
R 1
R 1
R 1
R 6
R 2
R 2
R 2
R 1
R 1
U 1
U 0
U 1
U 1
U 0
U O
U 1
U 1
U 1
U 8
U 1
U 1
U 1
U 0
U 1
U 1
U 2
;
run;
proc npar1way data=siblings wilcoxon correct=no;
class Hometown;
exact wilcoxon;
var Number;
run;
```

Statistic (S)	246.5000	
Normal Approximation		
Z	-3.1707	
One-Sided Pr < Z	0.0008	
Two-Sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.0015	
t Approximation		
One-Sided Pr < Z	0.0015	
Two-Sided $\operatorname{Pr}>\|\mathrm{Z}\|$	0.0029	
Exact Test		
One-Sided $\operatorname{Pr}<=$ S	4.144E-04	
Two-Sided Pr >= \|S - Mean		0.0010

Exercise 8, page 74: If we perform the permutation test on the data in Exercise 7, then the p-value that SAS outputs for the two-sided test is 0.1131 . This is quite close to the t-test approximation in $7(\mathrm{~b})$. Statistical theory suggests that for large samples under appropriate conditions, the permutation test and the t-test will give essentially the same p-value. This example suggests such a fact.

```
proc npar1way data=siblings anova scores=data;
    class Hometown;
    exact scores=data;
    var Number;
    run;
```

The NPAR1WAY Procedure	
Data Scores Two-Sample Test	
Statistic (S)	21.0000
Normal Approximation	-1.6049
Z	0.0543
One-Sided $\mathrm{Pr}<\mathrm{Z}$	0.1085
Two-Sided $\mathrm{Pr}>\|\mathrm{Z}\|$	
Exact Test	0.0637
One-Sided $\mathrm{Pr}<=\mathrm{S}$	
Two-Sided $\mathrm{Pr}>=\mid S-$ Mean \mid	0.1131

