Stat 151 Review Problems

4. (a) Let X denote the size of an adult male's foot so that X is normally distributed with mean 25 and standard deviation 3. Therefore,

$$
P(22<X<28)=P\left(\frac{22-25}{3}<\frac{X-25}{3}<\frac{28-25}{3}\right)=P(-1<Z<1) \approx 0.6826
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from a normal table.
4. (b) If \bar{X} denotes the average size of an adult male's foot, then X is normally distributed with mean 25 and standard deviation $3 / \sqrt{100}=0.3$. Therefore,

$$
P(24.7<\bar{X}<25.3)=P\left(\frac{24.7-25}{0.3}<\frac{\bar{X}-25}{0.3}<\frac{25.3-25}{0.3}\right)=P(-1<Z<1) \approx 0.6826
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from a normal table as in (a) above.
5. (a) Write the values in order: $150,180,190,230,250,250,280,300,340,380$. The median is just the mean of the two middle numbers. Since these two numbers are both 250 , the median is 250 . The mean is a simple calculation: $(150+180+190+230+250+250+280+300+340+380) / 10=255$. The standard deviation is calculated just as easily:

$$
\sqrt{\frac{697300-\frac{2550^{2}}{10}}{9}} \approx 72
$$

5. (b) For the Bright Idea Lighting Company, we have

$$
P(X>350)=P\left(Z>\frac{350-262}{41}\right) \approx P(Z>2.15) \approx 0.0158
$$

and for The Electric Company,

$$
P(X>350) \approx P\left(Z>\frac{350-255}{72}\right) \approx P(Z>1.32) \approx 0.0934
$$

where in both cases $Z \sim \mathcal{N}(0,1)$ and using a normal table.
5. (c) An approximate 95% confidence interval for the true mean lifetime of The Electric Company's light bulbs is given by

$$
\bar{X} \pm t_{0.025, n-1} \frac{S}{\sqrt{n}} \quad \text { or } \quad 255 \pm 2.262 \frac{72}{\sqrt{10}} \quad \text { or } \quad(204,307)
$$

5. (d) Since the mean lifetime of Bright Idea Lighting light bulbs is 262, and since 262 lies in the 95% confidence interval constructed in (c), we conclude that there is no significant difference in mean lifetimes for these two companies' light blubs.
6. Let μ_{1} denote the mean waiting time for Cheap- O-Lube customers last year, and let μ_{2} denote the mean waiting time for Cheap-O-Lube customers this year. We are interested in testing the hypotheses

$$
H_{0}: \mu_{1}-\mu_{2} \leq 0 \quad \text { vs. } \quad H_{1}: \mu_{1}-\mu_{2}>0 .
$$

Since there are over 30 data points in each sample, we use a two sample z-test. Thus, our test statistic is

$$
Z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{4.5-3.5}{\sqrt{\frac{1^{2}}{200}+\frac{1^{2}}{180}}} \approx 9.73
$$

From a normal table, the critical value corresponding to $\alpha=0.05$ is 1.645 . Since $9.73>1.645$ we reject H_{0} and conclude that there is overwhelming evidence to suggest that Cheap- O-Lube customers are waiting less this year.

