Math 261 Fall 2011
The Bisection Method
Suppose that we would like to estimate the root of the function $f(x)$ between $x=a$ and $x=b$ using the bisection method. We can implement this in MATLAB (or OCTAVE) as follows. First create a file named $\mathrm{f} . \mathrm{m}$ whose contents just define the function f.
function $y=f(x)$
$y=x^{\wedge} 2-2 ;$
Next create a second file bisect.m whose contents contain the bisection algorithm applied to f. Be sure that the files $\mathrm{f} . \mathrm{m}$ and bisect.m are in the same directory.

```
function p=bisect(a,b,tol,n)
% Output: p estimate of root
% Input: Interval [a,b], Tolerance tol, Max Interations n
% Evaluates a user written function f()
%Check intervals are opposite signs
if f(a)*f(b) >=0
    error('f(a) and f(b) do not have opposite signs')
end
% Initialize Variables
i=1;
fa=f(a) ;
while i < n
    p = a+(b-a)/2;
    fp=f(p);
    if fp==0 | (b-a)/2<tol
            break
    end
    i = i+1;
    if fa*fp > 0
            a=p;
            fa=fp;
        else
            b=p;
        end
    if i== n
            error('Max Iterations Reached, Method Failed')
    end
end
```

Running these programs with $a=1, b=2$, tolerance 1×10^{-9}, and 100000 as the maximum number of steps, we find the following.

```
octave-3.2.3:1> format long
octave-3.2.3:2> bisect(1,2,1E-9,100000)
ans = 1.41421356052160
```

As well, we can compare our estimate to $\sqrt{2}$ to the software's internal value of $\sqrt{2}$.

```
octave-3.2.3:3> sqrt(2)
ans = 1.41421356237310
```

Note that our estimate and the software's internal value are accurate to 8 decimal places (as expected).

Example. Consider the function

$$
f(x)=48 x(1+x)^{60}-(1+x)^{60}+1 .
$$

Note that $f(0)=0$. There is, however, another root slightly larger than 0 . Using the bisection method with $a=0.001, b=0.1$, tolerance 1×10^{-9}, and 100000 as the maximum number of steps, we find the following.

```
octave-3.2.3:4> bisect(0.0001,0.01,1E-9,100000)
ans = 0.00762860316634178
```

