CS 261 Fall 2011
Solutions to Assignment \#6

1. You can check your answers with mine. On OCTAVE, one gets
```
> format long
> rand('seed',123456789)
> y=secret('BUBBLEGUM',6)
ans y = 369789376274 369790779302 369795773986 369808264640 369833872346 369880145434
```

You can also check that this is correct.

```
> lagrange([1:6],y,0)
ans = 369789166876
> b10b26(369789166876)
ans = bubblegum
```

2. If $f(x)=x^{2}$ for $-\pi \leq x \leq \pi$, then since $x^{2} \cos (k x)$ is an even function on $[-\pi, \pi]$, we find

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos (k x) \mathrm{d} x=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (k x) \mathrm{d} x
$$

for $k=0,1, \ldots$. For $k=0$ we have

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \mathrm{~d} x=\frac{2 \pi^{2}}{3}
$$

while for $k=1,2, \ldots$, we have

$$
a_{k}=\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos (k x) \mathrm{d} x=\frac{4}{k^{2}} \cos (k \pi)=\frac{4(-1)^{k}}{k^{2}}
$$

using integration by parts twice. However, since $x^{2} \sin (k x)$ is an odd function on $[-\pi, \pi]$, we find

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin (k x) \mathrm{d} x=0 .
$$

(a) Therefore, the Fourier series for f is

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)=\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4(-1)^{k}}{k^{2}} \cos (k x) .
$$

(b) Choosing $x=0$ so that $\cos (k x)=1$ implies

$$
0=\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4(-1)^{k}}{k^{2}}=\frac{\pi^{2}}{3}-\sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{k^{2}}
$$

or, equivalently,

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=\frac{\pi^{2}}{12}
$$

Choosing $x=\pi$ so that $\cos (k \pi)=(-1)^{k}$ implies

$$
\pi^{2}=\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4(-1)^{k}(-1)^{k}}{k^{2}}=\frac{\pi^{2}}{3}+\sum_{k=1}^{\infty} \frac{4}{k^{2}}
$$

so that

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{1}{4}\left(\pi^{2}-\frac{\pi^{2}}{3}\right)=\frac{\pi^{2}}{6} .
$$

