
Math 261 Fall 2011
Solutions to Assignment #5

1. The following commands load the data and create separate vectors for x and y.

load data.m

x=data(:,1)

y=data(:,2)

Note that if you are using MATLAB, you want to load data.mat instead. Now define xbar and
ybar to be the mean of x and y, respectively, and compute m and b.

xbar = sum(x) / length(x)

ybar = sum(y) / length(y)

m = sum((x-xbar).*(y-ybar)) / sum((x-xbar).*(x-xbar))

b = ybar - m*xbar

The answers are

m = 0.471146705905806

b = -3.25490196668521

so that the equation of the least-squares line (i.e., regression line or line of best fit) is

y = 0.471146705905806x− 3.25490196668521.

2. Here are two files that you could use in order to solve this problem. The first one was written
by Sarah and implements the pseudocode distributed in class. It is called lg.m.

function Pz = lg(x,y,z)

% Compute Lagrange polynomial P(x) and evaluate at z

%inputs

% x - a vector of points

% y - a vector of f(x)

% z - a point to be evalutated

%output Pz = P(z)

%Initialize Variables

Pz=0;

n=length(x);

L=ones(n,1);

for i=1:n

for j=1:n

if i ~= j

L(i) = (z-x(j))/(x(i)-x(j))*L(i);

end

end

Pz = L(i)*y(i)+Pz;

end

end



Here is a second solution that I wrote and is called lagrange.m.

function Pz=lagrange(x,y,z)

% Evaluates the nth Lagrange interpolating polynomial P

% to the function f using (n+1) nodes

% Input x: row vector containing (n+1) nodes

% Input y: row vector containing function values at the nodes

% Input z: point you are interested in approximating the function at

% Output: value of P(z),

Pz=0;

n=length(x);

L=ones(1,n);

L(1)=prod(z-[x(2:n)])/(prod(x(1)-[x(2:n)]));

L(n)=prod(z-[x(1:n-1)])/(prod(x(n)-[x(1:n-1)]));

for i = [2:n-1]

L(i)=prod(z-[x(1:i-1)]).*prod(z-[x(i+1:n)])/(prod(x(i)-[x(1:i-1)]).*prod(x(i)-[x(i+1:n)]));

end

Pz=sum(L.*y);

end

Implementing lagrange.m gives

x = [1 2 3];

y = [149674925 386437459 729429125];

z = 0;

lagrange(x,y,z)

ans = 19141523

If we now convert 19141523 to 19 14 15 23 and then convert the numbers to letters, we find the
secret word is SNOW.

3. (a) (Exercise 6(a) on page 115) In order to approximate f(0.43) using the Lagrange interpolating
polynomials of degrees 1, 2, and 3, we require 2, 3, and 4 nodes, respectively. We will use the nodes
closest to 0.43 for the approximations. Hence, let

x = [0 0.25 0.5 0.75];

y = [1 1.64872 2.71828 4.48169];

z = 0.43;

so that the degree 1 approximation is

lagrange(x(2:3),y(2:3),z)

ans = 2.41880320000000,

(continued)



the degree 2 approximation is

lagrange(x(2:4),y(2:4),z)

ans = 2.34886312000000,

and the degree 3 approximation is

lagrange(x,y,z)

ans = 2.36060473408000.

If you used the first 3 nodes for the degree 2 approximation instead, then you would find

lagrange(x(1:3),y(1:3),z)

ans = 2.37638252800000.

3. (b) (Exercise 18 on page 116) Using lagrange.m with

x = [1950 1960 1970 1980 1990 2000];

y = [151326 179323 203302 226542 249633 281422];

gives our approximation for the population in 1940 as

lagrange(x,y,1940)

ans = 102397,

our approximation for the population in 1975 as

lagrange(x,y,1975)

ans = 215042.75,

and our approximation for the population in 2020 as

lagrange(x,y,2020)

ans = 513443.

Our 1975 figure is probably quite accurate since it is an interior data point, while our 2020 is
probably not very accurate since this prediction assumes that the rate of growth of the population
is constant.

4. (Exercise 10 on page 115) If f(x) =
√
x− x2 then our nodes are [x0, x1, x2] = [0, x1, 1] and

[y0, y1, y2] = [f(x0), f(x1), f(x2)] = [f(0), f(x1), f(1)] = [0,
√

x1 − x21, 0]. Therefore,

L0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− x1)(x− 1)

x1
,

L1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

x(x− 1)

x1(x1 − 1)
,

L2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

x(x− x1)

(1− x1)
,



and so

P2(x) = L0(x)y0 + L1(x)y1 + L2(x)y2 =
(x− x1)(x− 1)

x1
· 0 +

x(x− 1)

x1(x1 − 1)
· y1 +

x(x− x1)

(1− x1)
· 0

=
x(x− 1)

x1(x1 − 1)
·
√
x1 − x21

= − x(x− 1)√
x1(1− x1)

.

If we now consider f(x)− P2(x), then

f(x)− P2(x) =
√

x− x2 +
x(x− 1)√
x1(1− x1)

.

Hence, f(0.5)− P2(0.5) = −0.25 implies√
(0.5)− (0.5)2 +

(0.5)(0.5− 1)√
x1(1− x1)

= −0.25

or, equivalently,

0.5− 0.25√
x1(1− x1)

= −0.25

which implies

2− 1√
x1(1− x1)

= −1 and so
√

x1(1− x1) =
1

3
.

Expanding the square gives

x21 − x1 = −1

9
.

The two roots of this equation may be found by completing the square, namely

x21 − x1 +
1

4
= −1

9
+

1

4
or

(
x1 −

1

2

)2

=
5

36

and so

x1 =
1

2
−
√

5

36
or x1 =

1

2
+

√
5

36
.

The largest of these is therefore

x1 =
1

2
+

√
5

36
=

3 +
√

5

6
≈ 0.872677996249965.


