CS 261 Fall 2011
Solutions to Assignment \#5

1. The following commands load the data and create separate vectors for x and y .
```
load data.m
x=data(:,1)
y=data(:,2)
```

Note that if you are using MATLAB, you want to load data.mat instead. Now define xbar and ybar to be the mean of x and y , respectively, and compute m and b .

```
xbar = sum(x) / length(x)
ybar = sum(y) / length(y)
m = sum((x-xbar).*(y-ybar)) / sum((x-xbar).*(x-xbar))
b = ybar - m*xbar
```

The answers are
$\mathrm{m}=0.471146705905806$
$\mathrm{b}=-3.25490196668521$
so that the equation of the least-squares line (i.e., regression line or line of best fit) is

$$
y=0.471146705905806 x-3.25490196668521 .
$$

2. Here are two files that you could use in order to solve this problem. The first one was written by Sarah and implements the pseudocode distributed in class. It is called lg.m.
```
function Pz = lg(x,y,z)
% Compute Lagrange polynomial P(x) and evaluate at z
%inputs
% x - a vector of points
% y - a vector of f(x)
% z - a point to be evalutated
%output Pz = P(z)
%Initialize Variables
Pz=0;
n=length(x);
L=ones(n,1);
for i=1:n
    for j=1:n
        if i ~}= 
            L(i) = (z-x(j))/(x(i)-x(j))*L(i);
        end
    end
    Pz = L(i)*y(i)+Pz;
end
end
```

Here is a second solution that I wrote and is called lagrange.m.

```
function Pz=lagrange(x,y,z)
% Evaluates the nth Lagrange interpolating polynomial P
% to the function f using ( }n+1\mathrm{ ) nodes
% Input x: row vector containing ( }n+1\mathrm{ ) nodes
% Input y: row vector containing function values at the nodes
% Input z: point you are interested in approximating the function at
% Output: value of P(z),
Pz=0;
n=length(x);
L=ones(1,n);
L(1)=prod}(z-[x(2:n)])/(prod(x(1)-[x(2:n)]))
L(n)=prod}(z-[x(1:n-1)])/(prod(x(n)-[x(1:n-1)]))
for i = [2:n-1]
L(i) =prod(z-[x(1:i-1)]).*prod(z-[x(i+1:n)])/(prod(x(i)-[x(1:i-1)]).*prod(x(i)-[x(i+1:n)]));
end
Pz=sum(L.*y);
end
Implementing lagrange.m gives
```

```
x = [llll
```

x = [llll
y = [149674925 386437459 729429125];
z = 0;
lagrange(x,y,z)
ans = 19141523

```

If we now convert 19141523 to 19141523 and then convert the numbers to letters, we find the secret word is SNOW.
3. (a) (Exercise 6(a) on page 115) In order to approximate \(f(0.43)\) using the Lagrange interpolating polynomials of degrees 1,2 , and 3 , we require 2,3 , and 4 nodes, respectively. We will use the nodes closest to 0.43 for the approximations. Hence, let
```

x = [0 0.25 0.5 0.75];
y = [1 1.64872 2.71828 4.48169];
z = 0.43;

```
so that the degree 1 approximation is
```

lagrange(x(2:3),y(2:3),z)
ans = 2.41880320000000,

```
the degree 2 approximation is
lagrange ( \(x(2: 4), y(2: 4), z)\)
ans \(=2.34886312000000\),
and the degree 3 approximation is
```

lagrange(x,y,z)
ans = 2.36060473408000.

```

If you used the first 3 nodes for the degree 2 approximation instead, then you would find
```

lagrange(x(1:3),y(1:3),z)
ans = 2.37638252800000.

```
3. (b) (Exercise 18 on page 116) Using lagrange.m with
x = [1950 1960197019801990 2000];
\(y=\left[\begin{array}{llll}151326 & 179323 & 203302 & 226542 \\ 249633 & 281422\end{array}\right] ;\)
gives our approximation for the population in 1940 as
```

lagrange(x,y,1940)
ans = 102397,

```
our approximation for the population in 1975 as
lagrange ( \(\mathrm{x}, \mathrm{y}, 1975\) )
ans \(=215042.75\),
and our approximation for the population in 2020 as
lagrange ( \(\mathrm{x}, \mathrm{y}, 2020\) )
ans \(=513443\).
Our 1975 figure is probably quite accurate since it is an interior data point, while our 2020 is probably not very accurate since this prediction assumes that the rate of growth of the population is constant.
4. (Exercise 10 on page 115) If \(f(x)=\sqrt{x-x^{2}}\) then our nodes are \(\left[x_{0}, x_{1}, x_{2}\right]=\left[0, x_{1}, 1\right]\) and \(\left[y_{0}, y_{1}, y_{2}\right]=\left[f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right)\right]=\left[f(0), f\left(x_{1}\right), f(1)\right]=\left[0, \sqrt{x_{1}-x_{1}^{2}}, 0\right]\). Therefore,
\[
\begin{gathered}
L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{\left(x-x_{1}\right)(x-1)}{x_{1}}, \\
L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{x(x-1)}{x_{1}\left(x_{1}-1\right)}, \\
L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{x\left(x-x_{1}\right)}{\left(1-x_{1}\right)},
\end{gathered}
\]
and so
\[
\begin{aligned}
P_{2}(x)=L_{0}(x) y_{0}+L_{1}(x) y_{1}+L_{2}(x) y_{2} & =\frac{\left(x-x_{1}\right)(x-1)}{x_{1}} \cdot 0+\frac{x(x-1)}{x_{1}\left(x_{1}-1\right)} \cdot y_{1}+\frac{x\left(x-x_{1}\right)}{\left(1-x_{1}\right)} \cdot 0 \\
& =\frac{x(x-1)}{x_{1}\left(x_{1}-1\right)} \cdot \sqrt{x_{1}-x_{1}^{2}} \\
& =-\frac{x(x-1)}{\sqrt{x_{1}\left(1-x_{1}\right)}} .
\end{aligned}
\]

If we now consider \(f(x)-P_{2}(x)\), then
\[
f(x)-P_{2}(x)=\sqrt{x-x^{2}}+\frac{x(x-1)}{\sqrt{x_{1}\left(1-x_{1}\right)}}
\]

Hence, \(f(0.5)-P_{2}(0.5)=-0.25\) implies
\[
\sqrt{(0.5)-(0.5)^{2}}+\frac{(0.5)(0.5-1)}{\sqrt{x_{1}\left(1-x_{1}\right)}}=-0.25
\]
or, equivalently,
\[
0.5-\frac{0.25}{\sqrt{x_{1}\left(1-x_{1}\right)}}=-0.25
\]
which implies
\[
2-\frac{1}{\sqrt{x_{1}\left(1-x_{1}\right)}}=-1 \quad \text { and so } \quad \sqrt{x_{1}\left(1-x_{1}\right)}=\frac{1}{3} .
\]

Expanding the square gives
\[
x_{1}^{2}-x_{1}=-\frac{1}{9} .
\]

The two roots of this equation may be found by completing the square, namely
\[
x_{1}^{2}-x_{1}+\frac{1}{4}=-\frac{1}{9}+\frac{1}{4} \quad \text { or } \quad\left(x_{1}-\frac{1}{2}\right)^{2}=\frac{5}{36}
\]
and so
\[
x_{1}=\frac{1}{2}-\sqrt{\frac{5}{36}} \quad \text { or } \quad x_{1}=\frac{1}{2}+\sqrt{\frac{5}{36}} .
\]

The largest of these is therefore
\[
x_{1}=\frac{1}{2}+\sqrt{\frac{5}{36}}=\frac{3+\sqrt{5}}{6} \approx 0.872677996249965 .
\]```

