Math 257 Fall 2005
Solutions to Quiz \#3
(a) Briefly, ratio estimation might be appropriate because the social worker is interested in a ratio of population characteristics, and she has complete knowledge about the total number of dwellings. Furthermore, there is likely to be a direct proportion between the number of people per dwelling and the number of rooms per dwelling. If there are 0 dwellings, then there are 0 people so that the linear regression line will pass through the origin. The small sample size might be some concern, but fortunately the sampling fraction $f=1 / 11<0.25$.
(b) We begin by finding r, the estimator of the population ratio R. Recall that $r=\bar{y} / \bar{x}$ so that

$$
r=\frac{\bar{y}}{\bar{x}}=\frac{2.6}{9.2} \approx 0.283
$$

From the formula for $s^{2}(r)$, and a little algebra, we find that

$$
\begin{aligned}
s^{2}(r) & =\frac{(1-f)}{n(n-1) \bar{x}^{2}}\left(\sum_{i=1}^{n} y_{i}^{2}-2 r \sum_{i=1}^{n} y_{i} x_{i}+r^{2} \sum_{i=1}^{n} x_{i}^{2}\right) \\
& \approx\left(\frac{1-25 / 275}{25 \cdot 24 \cdot 9.2^{2}}\right)\left(169.0-2 \cdot 0.283 \cdot 522+(0.283)^{2} \cdot 2240\right) \\
& \approx 0.000948
\end{aligned}
$$

Thus, an approximate 95% CI for R is given by

$$
r \pm 2 s(r) \quad \text { or } \quad 0.283 \pm 0.0616
$$

