Example: A senior administrator at the University of Regina wishes to estimate the proportion of its students that have used cocaine, a sensitive subject. Students were classified into one of two strata-undergraduate and graduate-and were randomly sampled within the stratum. Since there was some concern that students might be unwilling to disclose their use of cocaine to a university official, the following random response method was used. The university official constructs a deck of 30 cards. On 26 of them are marked \mathbf{N} for never used cocaine and 4 of them are marked \mathbf{C} for have used cocaine at least once. Each sampled student was asked to draw a card from the deck and to respond yes if the letter agrees with the group that student belongs to. The results are as follows:

STRATA	total number of students	number sampled	number answering yes
undergraduate	8972	900	723
graduate	1548	150	117

(a) Construct a 95% confidence interval for the proportion of undergraduates who have used cocaine at least once.
(b) Construct a 95% confidence interval for the proportion of graduates who have used cocaine at least once.
(c) Based on your answers to (a) and (b), is there a statistically significant difference in the use of cocaine between undergraduates and graduates? Is this surprising? Why or why not?

Solutions: (a) We find that for undergraduates, $n_{1}=723, n=900, \theta=4 / 30$. Thus, an estimator of p is given by

$$
\hat{p}=\frac{n_{1} / n}{2 \theta-1}-\frac{1-\theta}{2 \theta-1}=\frac{723 / 900}{-22 / 30}-\frac{26 / 30}{-22 / 30} \approx 0.086
$$

The estimated variance is given by

$$
s^{2}(\hat{p})=\frac{1}{(2 \theta-1)^{2}} \cdot \frac{1}{n} \cdot \frac{n_{1}}{n} \cdot\left(1-\frac{n_{1}}{n}\right)=\frac{1}{(-22 / 30)^{2}} \cdot \frac{1}{900} \cdot \frac{723}{900} \cdot\left(1-\frac{723}{900}\right) \approx 0.000326 .
$$

In other words, an approximate 95% confidence interval for p is given by $0.086 \pm 2(0.018)$.
(b) We find that for graduates, $n_{1}=117, n=150, \theta=4 / 30$. Thus, an estimator of p is given by

$$
\hat{p}=\frac{n_{1} / n}{2 \theta-1}-\frac{1-\theta}{2 \theta-1}=\frac{117 / 150}{-22 / 30}-\frac{26 / 30}{-22 / 30} \approx 0.118
$$

The estimated variance is given by

$$
s^{2}(\hat{p})=\frac{1}{(2 \theta-1)^{2}} \cdot \frac{1}{n} \cdot \frac{n_{1}}{n} \cdot\left(1-\frac{n_{1}}{n}\right)=\frac{1}{(-22 / 30)^{2}} \cdot \frac{1}{150} \cdot \frac{117}{150} \cdot\left(1-\frac{117}{150}\right) \approx 0.0021
$$

In other words, an approximate 95% confidence interval for p is given by $0.118 \pm 2(0.046)$.
(c) Since the confidence intervals computed from (a) and (b) overlap, there is no statistically significant difference in cocaine use between undergraduates and graduates. ETC.

