Example: The City of Regina chief engineer is considering a zoning change for the Wascana Park subdivision to allow a new shopping complex to be built. In order to assess the opinion of residents, a cluster sample is used. The subdivision map is marked into $M=170$ blocks, and a random sample of $m=15$ blocks is surveyed. For each of these blocks (labelled i, for $i=1, \ldots 15$), the number of adult residents $\left(n_{i}\right)$ and the number of adult residents opposing the zoning change $\left(y_{i}\right)$ are recorded. The data are summarized below:

$$
\begin{array}{rlll}
\sum_{i=1}^{15} n_{i}=546, & \sum_{i=1}^{15} n_{i}^{2}=9981, & \sum_{i=1}^{15} n_{i} y_{i T}=4035, & \sum_{i=1}^{15} y_{i T}=182, \quad \sum_{i=1}^{15} y_{i T}^{2}=1819 \\
& \sum_{i=1}^{15} \bar{y}_{i}^{2}=1.54, & \sum_{i=1}^{15} n_{i}^{2} \bar{y}_{i}^{2}=2103, & \sum_{i=1}^{15} n_{i}^{2} \bar{y}_{i}=4571
\end{array}
$$

Use an appropriate estimator to construct an approximate 95% confidence interval for \bar{Y}, the proportion of Wascana Park adult residents opposed to the zoning change.

Solution: Since we do not know the population size N, and we do not suspect that the cluster sizes N_{i} are the same, we use the estimator $\bar{y}_{c(a)}$. Thus,

$$
\bar{y}_{c(a)}=\frac{\sum_{i=1}^{15} y_{i T}}{\sum_{i=1}^{15} n_{i}}=\frac{182}{546}=\frac{1}{3}
$$

and

$$
\begin{aligned}
s^{2}\left(\bar{y}_{c(a)}\right)=\frac{(M-m) m}{M(m-1)} \sum_{i=1}^{15}\left(\frac{n_{i}}{n}\right)^{2}\left(\bar{y}_{i}-\bar{y}_{c(a)}\right)^{2} & =\frac{(M-m) m}{M(m-1) n^{2}} \sum_{i=1}^{15} n_{i}^{2}\left(\bar{y}_{i}^{2}-2 \bar{y}_{i} \bar{y}_{c(a)}+\bar{y}_{c(a)}^{2}\right) \\
& =\frac{(M-m) m}{M(m-1) n^{2}}\left(\sum_{i=1}^{15} n_{i}^{2} \bar{y}_{i}^{2}-2 \bar{y}_{c(a)} \sum_{i=1}^{15} n_{i}^{2} \bar{y}_{i}+\bar{y}_{c(a)}^{2} \sum_{i=1}^{15} n_{i}^{2}\right) \\
& =\frac{(170-15) \cdot 15}{170 \cdot(15-1) \cdot 546^{2}}\left(2103-2 \cdot \frac{1}{3} \cdot 4571+\left(\frac{1}{3}\right)^{2} \cdot 9981\right) \\
& =0.000540 .
\end{aligned}
$$

Hence, an approximate 95% confidence interval for

$$
0.333 \pm 1.96 \cdot 0.023 \quad \text { or } \quad(0.288,0.379)
$$

