Stat 257: Solutions to Assignment \#3

(3.1) Let X denote the assessed yields, and let Y denote the actual yields. Our goal is to estimate Y_{T}. In addition to the data clearly given in the problem, note that we also know the following: $N=280, n=25$, and $X_{T}=439.5$.

simple random sample estimator

If we consider the estimator based solely on the values of the actual yields, then we obtain

$$
y_{T}=N \bar{y}=\frac{N}{n} \sum_{i=1}^{n} y_{i}=280 \cdot \frac{39.8}{25}=280 \cdot 1.592=445.76
$$

with estimated variance

$$
\begin{aligned}
s^{2}\left(y_{T}\right)=N^{2} s^{2}(\bar{y})=N^{2} \frac{(1-f)}{n(n-1)} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =N^{2} \frac{(1-f)}{n(n-1)}\left(\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right) \\
& =280^{2} \cdot \frac{\left(1-\frac{25}{280}\right)}{25 \cdot 24} \cdot\left(69.08-25 \cdot 1.592^{2}\right) \\
& =680.4896
\end{aligned}
$$

ratio estimator

The method of ratio estimation provides us with the estimate

$$
y_{T R}=r X_{T}=\frac{y_{T}}{x_{T}} \cdot X_{T}=\frac{39.8}{41.4} \cdot 439.5 \approx 422.51
$$

which has estimated variance

$$
\begin{aligned}
s^{2}\left(y_{T R}\right)=N^{2} & \cdot \frac{(1-f)}{n} \cdot \sum_{i=1}^{n} \frac{\left(y_{i}-r x_{i}\right)^{2}}{n-1}=N^{2} \cdot \frac{(1-f)}{n(n-1)} \cdot\left(\sum_{i=1}^{n} y_{i}^{2}-2 r \sum_{i=1}^{n} y_{i} x_{i}+\sum_{i=1}^{n} x_{i}^{2}\right) \\
& \approx \frac{280^{2} \cdot\left(1-\frac{25}{280}\right)}{25 \cdot 24} \cdot\left(69.08-2 \cdot \frac{39.8}{41.4} \cdot 70.64+\left(\frac{39.8}{41.4}\right)^{2} \cdot 73.47\right) \\
& \approx 138.1581 .
\end{aligned}
$$

regression estimator

In order to determine the regression estimate, we begin by computing the estimated slope of the regression line, namely

$$
\tilde{b}=\frac{s_{Y X}}{s_{X}^{2}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-n \bar{y} \bar{x}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{70.64-25 \cdot \frac{39.8}{25} \cdot \frac{41.4}{25}}{73.47-25 \cdot\left(\frac{41.4}{25}\right)^{2}} \approx 0.963 .
$$

This gives the regression estimate as

$$
\begin{aligned}
y_{L T}=N \cdot \bar{y}_{L} & =N(\bar{y}+\tilde{b}(\bar{X}-\bar{x})) \\
& \approx 280 \cdot\left(1.592+0.963 \cdot\left(\frac{439.5}{280}-\frac{41.4}{25}\right)\right) \\
& \approx 422.47 .
\end{aligned}
$$

We find

$$
s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}=\frac{69.08-25 \cdot\left(\frac{39.8}{25}\right)^{2}}{24} \approx 0.2383
$$

so that $y_{T L}$ has estimated standard variance

$$
\begin{aligned}
s^{2}\left(y_{T L}\right) & =N^{2} \cdot \frac{(1-f)}{n} \cdot\left(s_{Y}^{2}-\tilde{b} s_{Y X}\right) \\
& \approx 280^{2} \cdot \frac{\left(1-\frac{25}{280}\right)}{25} \cdot(0.2383-0.963 \cdot 0.1971) \\
& \approx 138.1559 .
\end{aligned}
$$

Hence, approximate 95% confidence intervals for Y_{T} are given by

- $445.76 \pm 2 \sqrt{680.4896}$ or 445.8 ± 52.2 (simple random sampling estimation),
- $422.51 \pm 2 \sqrt{138.1581}$ or 422.5 ± 23.5 (ratio estimation),
- $422.47 \pm 2 \sqrt{138.1559}$ or 422.5 ± 23.5 (regression estimation).

Note that the estimated standard errors are simply the square roots of the estimated variances, namely

- $s\left(y_{T}\right) \approx \sqrt{680.4896} \approx 26.09$,
- $s\left(y_{T R}\right) \approx \sqrt{138.1581} \approx 11.75$,
- $s\left(y_{T L}\right) \approx \sqrt{138.1559} \approx 11.75$.

The estimated relative efficiencies are the ratios of the estimated variances. That is,

$$
\operatorname{RelEff}\left(y_{T R}, y_{T}\right)=\frac{s^{2}\left(y_{T R}\right)}{s^{2}\left(y_{T}\right)} \approx \frac{138.1581}{680.4896} \approx 20.3 \%
$$

and

$$
\operatorname{RelEff}\left(y_{T L}, y_{T}\right)=\frac{s^{2}\left(y_{T L}\right)}{s^{2}\left(y_{T}\right)}=\frac{138.1559}{680.4896} \approx 20.3 \%
$$

(3.3) It appears that the most appropriate method for estimating \bar{Y} is regression estimation. This is arguably the best choice because we are observing bivariate data ($X=$ height, and Y) and we have complete knowledge about X. Furthermore, it appears that there is a rough linear relationship between X and Y which does not pass through the origin. From the data presented, we observe that $N=560, n=10, \bar{X}=173.2$, and we calculate that

$$
\sum_{i=1}^{n} y_{i}=34.1, \quad \sum_{i=1}^{n} y_{i}^{2}=117.67, \quad \sum_{i=1}^{n} x_{i}=1707, \quad \sum_{i=1}^{n} x_{i}^{2}=292069, \quad \sum_{i=1}^{n} y_{i} x_{i}=5813.4 .
$$

In order to determine the regression estimate, we begin by computing the estimated slope of the regression line, namely

$$
\tilde{b}=\frac{s_{Y X}}{s_{X}^{2}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n} y_{i} x_{i}-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}=\frac{5813.4-10 \cdot \frac{1707}{10} \cdot \frac{34.1}{10}}{292069-10 \cdot\left(\frac{1707}{10}\right)^{2}} \approx-0.0109 .
$$

This gives the regression estimate as

$$
\begin{aligned}
\bar{y}_{L} & =\bar{y}+\tilde{b}(\bar{X}-\bar{x}) \\
& \approx 3.41-0.0109 \cdot(173.2-170.7) \\
& \approx 3.38 .
\end{aligned}
$$

We find

$$
s_{Y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}=\frac{117.67-10 \cdot\left(\frac{34.1}{10}\right)^{2}}{9} \approx 0.1543
$$

so that \bar{y}_{L} has estimated standard variance

$$
\begin{aligned}
s^{2}\left(\bar{y}_{L}\right) & =\frac{(1-f)}{n} \cdot\left(s_{Y}^{2}-\tilde{b} s_{Y X}\right) \\
& \approx \frac{\left(1-\frac{10}{560}\right)}{10} \cdot[0.1543-(-0.0109) \cdot(-0.83)] \\
& \approx 0.0143
\end{aligned}
$$

This gives an estimated standard error of $s\left(\bar{y}_{L}\right) \approx 0.119$ so that an approximate 95% confidence interval for \bar{Y} is

$$
3.38 \pm 2 \cdot 0.119 \text { or }(3.14,3.61)
$$

