(6.8) There was a misprint in this problem in earlier editions of the text. The earlier editions had $\bar{y}=169$ while the corrected editions have $\bar{y}=2.6$. If you use $\bar{y}=169$, though, then the problem does have a "solution." However, it should be noted that the only way that \bar{y} can equal $\sum y_{i}^{2}$ is if $y_{i}=0$ for all i, or there is a single data point $y_{1}=1$.
$\bar{y}=169:$ We begin by finding r, the estimator of the population ratio R. Recall that $r=\bar{y} / \bar{x}$ so that

$$
r=\frac{\bar{y}}{\bar{x}}=\frac{169.0}{9.2} \approx 18.4
$$

From the computational formula for $\hat{V}(r)$, and a little algebra, we find that

$$
\begin{aligned}
\hat{V}(r) & =\left(\frac{N-n}{n N}\right)\left(\frac{1}{\mu_{x}^{2}}\right)\left(s_{y}^{2}+r^{2} s_{x}^{2}-2 r \hat{\rho} s_{x} s_{y}\right) \\
& =\left(\frac{N-n}{n N}\right)\left(\frac{1}{\mu_{x}^{2}}\right)\left(\frac{1}{n-1}\left(\sum y_{i}^{2}-2 r \sum x_{i} y_{i}+r^{2} \sum x_{i}^{2}\right)\right)
\end{aligned}
$$

Using \bar{x} to approximate μ_{x}, and plugging in the given data, we conclude that

$$
\hat{V}(r) \approx\left(\frac{275-25}{25 \cdot 275}\right)\left(\frac{1}{9.2^{2}}\right)\left(\frac{1}{25-1}\left(169.0-2 \cdot 18.4 \cdot 522+(18.4)^{2} \cdot 2240\right)\right) \approx 13.2
$$

Thus, a reasonable bound on the error of estimation is $2 \sqrt{\hat{V}(r)} \approx 7.3$. In other words, an approximate 95% confidence interval for R is 18.4 ± 13.2.

If $\bar{y}=2.6$: We begin by finding r, the estimator of the population ratio R. Recall that $r=\bar{y} / \bar{x}$ so that

$$
r=\frac{\bar{y}}{\bar{x}}=\frac{2.6}{9.2} \approx 0.283
$$

From the computational formula for $\hat{V}(r)$, and a little algebra, we find that

$$
\begin{aligned}
\hat{V}(r) & =\left(\frac{N-n}{n N}\right)\left(\frac{1}{\mu_{x}^{2}}\right)\left(s_{y}^{2}+r^{2} s_{x}^{2}-2 r \hat{\rho} s_{x} s_{y}\right) \\
& =\left(\frac{N-n}{n N}\right)\left(\frac{1}{\mu_{x}^{2}}\right)\left(\frac{1}{n-1}\left(\sum y_{i}^{2}-2 r \sum x_{i} y_{i}+r^{2} \sum x_{i}^{2}\right)\right)
\end{aligned}
$$

Using \bar{x} to approximate μ_{x}, and plugging in the given data, we conclude that

$$
\hat{V}(r) \approx\left(\frac{275-25}{25 \cdot 275}\right)\left(\frac{1}{9.2^{2}}\right)\left(\frac{1}{25-1}\left(169.0-2 \cdot 0.283 \cdot 522+(0.283)^{2} \cdot 2240\right)\right) \approx 0.000948
$$

Thus, a reasonable bound on the error of estimation is $2 \sqrt{\hat{V}(r)} \approx 0.0616$. In other words, an approximate 95% confidence interval for R is 0.283 ± 0.0616.
(6.11) Again, we begin by finding r, the estimator of the population ratio R. Recall that $r=\bar{y} / \bar{x}$ so that

$$
r=\frac{\bar{y}}{\bar{x}}=\frac{\sum y_{i}}{\sum x_{i}}=\frac{11458}{10103} \approx 1.134
$$

Thus, we find that

$$
\hat{\mu}_{y}=r \mu_{x} \approx(1.134)(880) \approx 997.92
$$

As for a bound on the error of estimation, we find that $\sum\left(y_{i}-r x_{i}\right)^{2} \approx 46939.53$ so that $s_{r}^{2} \approx 94.067$. Hence,

$$
B=2 \sqrt{\hat{V}\left(\hat{\mu}_{y}\right)}=2 \sqrt{\left(\frac{N-n}{n N}\right) s_{r}^{2}} \approx 2 \sqrt{\left(\frac{500-12}{12 \cdot 500}\right)(94.067)} \approx 53.65
$$

(6.23) Suppose that x denotes income (in 1982 constant billions) in 1980 and that y denotes income (in 1982 constant billions) in 1989. From the data given in the problem, we find that $n=6, N=19$, and $\tau_{x}=674$. Furthermore,

$$
\sum x_{i}=245, \quad \sum x_{i}^{2}=11991, \quad \sum y_{i}=327, \quad \sum y_{i}^{2}=22131, \quad \sum x_{i} y_{i}=16196
$$

so that

$$
r=\frac{\sum y_{i}}{\sum x_{i}}=\frac{327}{245} \approx 1.3347
$$

Finally, let τ_{y} denote the 1989 total income.
(a) We find $\hat{\tau}_{y}$, a ratio estimator of τ_{y}. Hence,

$$
\hat{\tau}_{y}=r \tau_{x} \approx 1.3347 \cdot 674 \approx 899.58
$$

As for the estimated variance of $\hat{\tau}_{y}$, we have

$$
\begin{aligned}
\hat{V}\left(\hat{\tau}_{y}\right) & =\left(\frac{\tau_{x}^{2}}{\mu_{x}^{2}}\right)\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-1}\right) \sum\left(y_{i}-r x_{i}\right)^{2} \\
& =N^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-1}\left(\sum y_{i}^{2}-2 r \sum x_{i} y_{i}+r^{2} \sum x_{i}^{2}\right)\right) \\
& \approx 19^{2}\left(\frac{19-6}{6 \cdot 19}\right)\left(\frac{1}{6-1}\left(22131-2 \cdot 1.3347 \cdot 16196+1.3347^{2} \cdot 11991\right)\right) \\
& \approx 2127.94
\end{aligned}
$$

so that a bound on the error of estimation is given by $2 \sqrt{\hat{V}\left(\hat{\tau}_{y}\right)} \approx 2 \sqrt{2127.94} \approx 92.26$.
(b) We find $\hat{\tau}_{y L}$, a regression estimator of τ_{y}. Since

$$
\hat{\tau}_{y L}=N \hat{\mu}_{y L}=N\left(\bar{y}+b\left(\mu_{x}-\bar{x}\right)\right)
$$

where

$$
b=\frac{\sum\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x_{i} y_{i}-n \bar{x} \bar{y}}{\sum x_{i}^{2}-n \bar{x}^{2}}
$$

we conclude that

$$
b \approx \frac{16196-5 \cdot(245 / 6) \cdot(327 / 6)}{11991-5 \cdot(245 / 6)^{2}} \approx 1.387
$$

and

$$
\hat{\tau}_{y L} \approx 19 \cdot((327 / 6)+1.387((674 / 19)-(245 / 6))) \approx 894.24
$$

As for the estimated variance of $\hat{\tau}_{y L}$, we have

$$
\begin{aligned}
\hat{V}\left(\hat{\tau}_{y L}\right) & =N^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-2}\right)\left[\sum\left(y_{i}-\bar{y}\right)^{2}-b^{2} \sum\left(x_{i}-\bar{x}\right)^{2}\right] \\
& =N^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-2}\right)\left[\sum y_{i}^{2}-b^{2} \sum x_{i}^{2}-n\left(\bar{y}^{2}-b^{2} \bar{x}^{2}\right)\right] \\
& \approx 19^{2}\left(\frac{19-6}{6 \cdot 19}\right)\left(\frac{1}{6-2}\right)\left[22131-1.387^{2} \cdot 11991-6\left((327 / 6)^{2}-1.387^{2}(245 / 6)^{2}\right)\right] \\
& \approx 5015.04
\end{aligned}
$$

so that a bound on the error of estimation is given by $2 \sqrt{\hat{V}\left(\hat{\tau}_{y L}\right)} \approx 2 \sqrt{5015.04} \approx 141.63$.
(c) We find $\hat{\tau}_{y D}$, a difference estimator of τ_{y}. Let d_{i} be the differences between the 1989 incomes and the 1980 incomes, so that $d_{i}=\{5,28,12,10,1,26\}$. We also find

$$
\sum d_{i}=82, \quad \sum d_{i}^{2}=1730
$$

Hence,

$$
\hat{\tau}_{y D}=N \hat{\mu}_{y D}=N\left(\mu_{x}+\bar{d}\right)=19(674 / 19+82 / 6) \approx 933.67 .
$$

As for the estimated variance of $\hat{\tau}_{y D}$, we have

$$
\begin{aligned}
\hat{V}\left(\hat{\tau}_{y D}\right)=N^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-1}\right) \sum\left(d_{i}-\bar{d}\right)^{2} & =N^{2}\left(\frac{N-n}{n N}\right)\left(\frac{1}{n-1}\right)\left(\sum d_{i}^{2}-n \bar{d}^{2}\right) \\
& \approx 19^{2}\left(\frac{19-6}{6 \cdot 19}\right)\left(\frac{1}{6-1}\right)\left(1730-6 \cdot(82 / 6)^{2}\right) \\
& \approx 5016.84
\end{aligned}
$$

so that a bound on the error of estimation is given by $2 \sqrt{\hat{V}\left(\hat{\tau}_{y D}\right)} \approx 2 \sqrt{5016.84} \approx 141.66$.
(d) The bound on the error of estimation for the ratio estimator is somewhat smaller than the bounds for the other two estimators, making it somewhat preferable.

