(5.1) We begin by computing \hat{p}_{i} from the given data:

$$
\hat{p}_{1}=\frac{4}{14} \approx 0.286 \quad \hat{p}_{2}=\frac{2}{9} \approx 0.222 \quad \hat{p}_{3}=\frac{8}{21} \approx 0.381 \quad \hat{p}_{4}=\frac{1}{6} \approx 0.167
$$

We can now use equation (5.13) to determine $\hat{p}_{\text {ST }}$ as our estimator of p, the proportion of deliquent accounts for the chain. Thus,

$$
\begin{aligned}
\hat{p}_{\mathrm{ST}} & =\frac{1}{N}\left(N_{1} \hat{p}_{1}+N_{2} \hat{p}_{2}+N_{3} \hat{p}_{3}+N_{4} \hat{p}_{4}\right) \\
& \approx \frac{1}{(65+42+93+25)}(65 \cdot 0.286+42 \cdot 0.222+93 \cdot 0.381+25 \cdot 0.167) \\
& \approx 0.30
\end{aligned}
$$

Using equation (5.14), we find the estimated variance of $\hat{p}_{\text {ST }}$ to be

$$
\begin{aligned}
\hat{V}\left(\hat{p}_{\mathrm{ST}}\right)= & \frac{1}{N^{2}} \sum_{i=1}^{4} N_{i}^{2}\left(\frac{N_{i}-n_{i}}{N_{i}}\right)\left(\frac{\hat{p}_{i} \hat{q}_{i}}{n_{i}-1}\right) \\
= & \frac{1}{225^{2}}\left[65^{2}\left(\frac{65-14}{65}\right)\left(\frac{0.286 \cdot 0.714}{14-1}\right)+42^{2}\left(\frac{42-9}{42}\right)\left(\frac{0.222 \cdot 0.778}{9-1}\right)\right. \\
& \left.\quad+93^{2}\left(\frac{93-21}{93}\right)\left(\frac{0.381 \cdot 0.619}{21-1}\right)+25^{2}\left(\frac{25-6}{25}\right)\left(\frac{0.167 \cdot 0.833}{6-1}\right)\right] \\
\approx & 0.0034397 .
\end{aligned}
$$

Thus, the error of estimation is

$$
2 \sqrt{\hat{V}\left(\hat{p}_{\mathrm{ST}}\right)} \approx 0.117
$$

(5.2) Recall that the Neyman allocation is used if there is no difference in cost per observation between strata. Thus, from equation (5.9), we find that the allocation proportions w_{i} are

$$
w_{i}=\frac{n_{i}}{n}=\left(\frac{N_{i} \sigma_{i}}{N_{1} \sigma_{1}+N_{2} \sigma_{2}+N_{3} \sigma_{3}}\right) .
$$

Hence, $N_{1} \sigma_{1}+N_{2} \sigma_{2}+N_{3} \sigma_{3}=132 \cdot 6+92 \cdot 5+27 \cdot 3=1333$ so that

$$
\begin{aligned}
& n_{1}=n \cdot w_{1}=30 \cdot(132 \cdot 6 / 1333) \approx 17.82 \approx 18 \\
& n_{2}=n \cdot w_{2}=30 \cdot(92 \cdot 5 / 1333) \approx 10.35 \approx 10 \\
& n_{3}=n \cdot w_{3}=30 \cdot(27 \cdot 3 / 1333) \approx 1.82 \approx 2
\end{aligned}
$$

Note that after rounding the n_{i} to the nearest integer, we have $18+10+2=30$, as required.
(5.5) We are told that the variance must be fixed at $V\left(\bar{y}_{\mathrm{ST}}\right)=0.1=D$. Thus, the optimal sample size n is given by equation (5.8) so that

$$
\begin{aligned}
n & =\frac{\left(\sum_{i=1}^{3} N_{i} \sigma_{i} / \sqrt{c_{i}}\right)\left(\sum_{i=1}^{3} N_{i} \sigma_{i} \sqrt{c_{i}}\right)}{N^{2} D+\sum_{i=1}^{3} N_{i} \sigma_{i}^{2}} \\
& =\frac{(112 \cdot \sqrt{2.25} / 3+68 \cdot \sqrt{3.24} / 5+39 \cdot \sqrt{3.24} / 6)(112 \cdot \sqrt{2.25} \cdot 3+68 \cdot \sqrt{3.24} \cdot 5+39 \cdot \sqrt{3.24} \cdot 6)}{(112+68+39)^{2} \cdot(0.1)+(112 \cdot 2.25+68 \cdot 3.24+39 \cdot 3.24)} \\
& \approx \frac{(92.18)(1537.2)}{\left(219^{2}\right)(0.1)+598.68} \\
& \approx 26.3 \approx 27
\end{aligned}
$$

Note that if we round down to 26 , then we DO NOT achieve the desired bound of $V\left(\bar{y}_{\mathrm{ST}}\right)=$ $0.1=D$; it is acceptable to have smaller variance than 0.1 , but not larger! Now that we have $n=27$, we use equation (5.7) to determine the n_{i}; hence,

$$
n_{i}=n\left(\frac{N_{i} \sigma_{i} / \sqrt{c_{i}}}{N_{1} \sigma_{1} / \sqrt{c_{1}}+N_{2} \sigma_{2} / \sqrt{c_{2}}+N_{3} \sigma_{3} / \sqrt{c_{3}}}\right)
$$

so that

$$
\begin{aligned}
& n_{1} \approx 27 \cdot\left(\frac{(112)(\sqrt{2.25}) / 3}{92.18}\right) \approx 16.40, \\
& n_{2} \approx 27 \cdot\left(\frac{(68)(\sqrt{3.24}) / 5}{92.18}\right) \approx 7.17 \\
& n_{3} \approx 27 \cdot\left(\frac{(39)(\sqrt{3.24}) / 6}{92.18}\right) \approx 3.43 .
\end{aligned}
$$

Rounding off yields $n_{1}=16, n_{2}=7, n_{3}=3$, which do not add to 27 . We can add 1 to stratum 3 to make $n_{3}=4$ since 3.43 is closer to the next higher integer than any of the other approximate sample size (16.40 or 7.17).
(5.13) From the problem description, we find that there are four natural strata identified. We also find that $c_{1}=4, c_{2}=4, c_{3}=8, c_{4}=8$ and $\hat{p}_{1}=0.9, \hat{p}_{2}=0.9, \hat{p}_{3}=0.5, \hat{p}_{4}=0.5$. Furthermore, if we want the error of estimation to satisfy $B=0.05$, then this is equivalent to specifying that the estimated variance of $\hat{p}_{\text {ST }}$ satisfy $\hat{V}\left(\hat{p}_{\mathrm{ST}}\right)=0.05^{2} / 4=0.000625=D$. The next step is to find the allocation proportions w_{i} which can be accomplished with equation (5.16); hence,

$$
w_{i}=\frac{n_{i}}{n}=\frac{N_{i} \sqrt{p_{i} q_{i} / c_{i}}}{\sum_{i=1}^{4} N_{i} \sqrt{p_{i} q_{i} / c_{i}}} .
$$

Since we no not know the exact values of p_{i}, we can use the a priori values given above. Hence,

$$
\begin{aligned}
\sum_{i=1}^{4} N_{i} \sqrt{p_{i} q_{i} / c_{i}} & =97 \sqrt{0.9 \cdot 0.1 / 4}+43 \sqrt{0.9 \cdot 0.1 / 4}+145 \sqrt{0.5 \cdot 0.5 / 8}+68 \sqrt{0.5 \cdot 0.5 / 8} \\
& \approx 14.55+6.45+25.63+12.02 \approx 58.65
\end{aligned}
$$

so that

$$
\begin{aligned}
& w_{1} \approx 14.55 / 58.65 \approx 0.248, \quad w_{2} \approx 6.45 / 58.65 \approx 0.110 \\
& w_{3} \approx 25.63 / 58.65 \approx 0.437, \quad w_{4} \approx 12.02 / 58.65 \approx 0.205
\end{aligned}
$$

We are now in a position to find the sample size n, which can be done with equation (5.15):

$$
\begin{aligned}
n & =\frac{\sum_{i=1}^{4} N_{i}^{2} p_{i} q_{i} / w_{i}}{N^{2} D+\sum_{i=1}^{4} N_{i} p_{i} q_{i}} \\
& \approx \frac{97^{2} \cdot 0.9 \cdot 0.1 / 0.248+43^{2} \cdot 0.9 \cdot 0.1 / 0.110+145^{2} \cdot 0.5 \cdot 0.5 / 0.437+68^{2} \cdot 0.5 \cdot 0.5 / 0.205}{\left(353^{2}\right)(0.000625)+(97 \cdot 0.9 \cdot 0.1+43 \cdot 0.9 \cdot 0.1+145 \cdot 0.5 \cdot 0.5+68 \cdot 0.5 \cdot 0.5)} \\
& \approx 157.2 \approx 158 .
\end{aligned}
$$

Finally, we find the values of $n_{i}=n w_{i}$ must therefore be

$$
n_{1} \approx 39, \quad n_{2} \approx 17, \quad n_{3} \approx 69, \quad n_{4} \approx 33
$$

(5.14) In order to estimate the population proportion p, we use \hat{p}_{ST} as our estimator of p, so that equation (5.13) yields

$$
\begin{aligned}
\hat{p}_{\mathrm{ST}} & =\frac{1}{N}\left(N_{1} \hat{p}_{1}+N_{2} \hat{p}_{2}+N_{3} \hat{p}_{3}+N_{4} \hat{p}_{4}\right) \\
& =\frac{1}{(97+43+145+68)}(97 \cdot 0.87+43 \cdot 0.93+145 \cdot 0.60+68 \cdot 0.53) \\
& \approx 0.701
\end{aligned}
$$

Using equation (5.14), and our solution to (5.13), we find the estimated variance of $\hat{p}_{\text {ST }}$ to be

$$
\begin{aligned}
\hat{V}\left(\hat{p}_{\mathrm{ST}}\right)= & \frac{1}{N^{2}} \sum_{i=1}^{4} N_{i}^{2}\left(\frac{N_{i}-n_{i}}{N_{i}}\right)\left(\frac{\hat{p}_{i} \hat{q}_{i}}{n_{i}-1}\right) \\
= & \frac{1}{353^{2}}\left[97^{2} \cdot\left(\frac{97-39}{97}\right) \cdot \frac{(0.87)(0.13)}{39-1}+43^{2} \cdot\left(\frac{43-17}{43}\right) \cdot \frac{(0.93)(0.07)}{17-1}\right. \\
& \left.\quad+145^{2} \cdot\left(\frac{145-69}{145}\right) \cdot \frac{(0.60)(0.40)}{69-1}+68^{2} \cdot\left(\frac{68-33}{68}\right) \cdot \frac{(0.53)(0.47)}{33-1}\right]
\end{aligned}
$$

$$
\approx 0.0006325
$$

Thus, the error of estimation is

$$
2 \sqrt{\hat{V}\left(\hat{p}_{\mathrm{ST}}\right)} \approx 0.0503
$$

(5.15) If the total cost of sampling is fixed at $\$ 400$, then

$$
c_{1} n_{1}+c_{2} n_{2}+c_{3} n_{3}+c_{4} n_{4}=400
$$

Substituting $n_{i}=n w_{i}, c_{1}=c_{2}=4, c_{3}=c_{4}=8$, and factoring yields

$$
n\left(w_{1}+w_{2}+2 w_{3}+2 w_{4}\right)=100 .
$$

However, we computed the allocation proportions w_{i} in (5.13) so that

$$
n \approx \frac{100}{0.248+0.110+2(0.437)+2(0.205)} \approx 60.9 \approx 61 .
$$

Finally, we can use the w_{i} to find the n_{i} :

$$
n_{1}=15, \quad n_{2}=7 \quad n_{3}=27 \quad n_{4}=12 .
$$

(It is important to also check that these values of n_{i} do, in fact, satisfy the total cost requirement:

$$
15 \cdot 4+4 \cdot 4+27 \cdot 8+12 \cdot 8=388
$$

This is okay since our rounding gives us a total cost that is less than $\$ 400$.)

