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Method of Maximum Likelihood

We now give a second method of finding estimators. While the method of
moments estimators were very easy to find, it will be more complicated to
determine maximum likelihood estimators. The trade o↵, as we will show, is
that maximum likelihood estimators have some very nice statistical properties
that the method of moments estimators do not possess.

Definition 6.1. If Y1, . . . , Yn

is a random sample from a population whose
density is f(y|✓), then the likelihood function is defined as

L(✓) :=
n

Y

i=1

f(y
i

|✓).

Note that the likelihood function is the joint density function of the ran-
dom sample Y1, . . . , Yn

viewed as a function of the parameter ✓ for a fixed
realization y1, . . . , yn of Y1, . . . , Yn

. The reason that we write L(✓) is to em-
phasize that the likelihood function is being viewed as a function only of ✓.

Example 6.2. If Y1, . . . , Yn

is a random sample from an Exp(✓) population
where ✓ > 0 is a parameter so that their common density is

f(y|✓) = 1

✓
e�y/✓, y > 0,

determine the likelihood function L(✓).

Solution. We find

L(✓) =
n

Y

i=1

f(y
i

|✓) =
n

Y

i=1

1

✓
e�yi/✓ =

1

✓
e�y1/✓ · 1

✓
e�y2/✓ · · · 1

✓
e�yn/✓

=
1

✓n
exp

(

�1

✓

n

X

i=1

y
i

)

for ✓ > 0 provided that y1 > 0, . . . , y
n

> 0.
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Example 6.3. If Y1, . . . , Yn

is a random sample from a N (✓,�2) population
where ✓ 2 R is a parameter so that their common density is

f(y|✓) = 1

�
p
2⇡

exp

⇢

� (y � ✓)2

2�2

�

, �1 < y < 1,

determine the likelihood function L(✓).

Solution. We find

L(✓) =
n

Y

i=1

f(y
i

|✓) =
n

Y

i=1

1

�
p
2⇡

exp

⇢

� (y
i

� ✓)2

2�2

�

=

✓

1

�
p
2⇡

◆

n

n

Y

i=1

exp

⇢

� (y
i

� ✓)2

2�2

�

=

✓

1

�
p
2⇡

◆

n

exp

(

�
n

X

i=1

(y
i

� ✓)2

2�2

)

for �1 < ✓ < 1 provided �1 < y1 < 1, . . . ,�1 < y
n

< 1.

Definition 6.4. The maximum likelihood estimator of ✓ is that value of ✓
which maximizes L(✓). Call it ✓̂MLE. That is,

✓̂MLE := argmax
✓

L(✓).

In order to maximize L(✓) it is sometimes easier to work with logL(✓)
instead. In fact, the log-likelihood function is important enough to have its
own notation.

Definition 6.5. If Y1, . . . , Yn

is a random sample from a population whose
density is f(y|✓), then the log-likelihood function `(✓) is defined as

`(✓) := logL(✓)

where L(✓) is the likelihood function.

Remark. Since the logarithm function is monotonically increasing, it is clear
that the value of ✓ where the maximum of L(✓) occurs is necessarily the value
of ✓ where the maximum of `(✓) occurs, and that the converse is also true.
That is,

✓̂MLE = argmax
✓

L(✓) i↵ ✓̂MLE = argmax
✓

logL(✓).

One technique for maximizing the log-likelihood function is to use the
second derivative test from elementary calculus. That is, we find the critical
points by solving `0(✓) = 0 for ✓, and then determine which critical point is
the global maximum by considering `00(✓).
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Example 6.6. If Y1, . . . , Yn

is a random sample from an Exp(✓) population
where ✓ > 0 is a parameter so that their common density is

f(y|✓) = 1

✓
e�y/✓, y > 0,

determine ✓̂MLE, the maximum likelihood estimator of ✓.

Solution. We found in Example 6.2 that

L(✓) =
1

✓n
exp

(

�1

✓

n

X

i=1

y
i

)

for ✓ > 0 provided that y1 > 0, . . . , y
n

> 0. In order to maximize the likelihood
function L(✓), we will try to maximize the log-likelihood function `(✓) instead.
Therefore,

`(✓) = logL(✓) = �n log ✓ � 1

✓

n

X

i=1

y
i

and so

`0(✓) =
d

d✓
`(✓) = �n

✓
+

1

✓2

n

X

i=1

y
i

.

Setting `0(✓) = 0 implies that

✓ =
1

n

n

X

i=1

y
i

= y

is the only critical point. Since

`00(✓) =
n

✓2
� 2

✓3

n

X

i=1

y
i

and

`00(y) =
n

y2
� 2

y3

n

X

i=1

y
i

=
n

y2
� 2

y3
· ny =

n

y2
� 2n

y2
= � n

y2
< 0

we deduce from the second derivative test that the critical point ✓ = y is, in
fact, where the global maximum occurs. Therefore,

✓̂MLE =
1

n

n

X

i=1

Y
i

= Y .

Example 6.7. If Y1, . . . , Yn

is a random sample from a N (✓,�2) population
where ✓ 2 R is a parameter so that their common density is

f(y|✓) = 1

�
p
2⇡

exp

⇢

� (y � ✓)2

2�2

�

, �1 < y < 1,

determine ✓̂MLE, the maximum likelihood estimator of ✓.
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Solution. We found in Example 6.3 that

L(✓) =

✓

1

�
p
2⇡

◆

n

exp

(

�
n

X

i=1

(y
i

� ✓)2

2�2

)

for �1 < ✓ < 1 provided �1 < y1 < 1, . . . ,�1 < y
n

< 1. In order
to maximize the likelihood function L(✓), we will try to maximize the log-
likelihood function `(✓) instead. Therefore,

`(✓) = logL(✓) = �n log � � n

2
log(2⇡)�

n

X

i=1

(y
i

� ✓)2

2�2

and so

`0(✓) =
d

d✓
`(✓) =

n

X

i=1

(y
i

� ✓)

�2
=

1

�2

n

X

i=1

y
i

� n✓

�2
=

ny

�2
� n✓

�2
=

n(y � ✓)

�2
.

Setting `0(✓) = 0 implies that

✓ =
1

n

n

X

i=1

y
i

= y

is the only critical point. Since

`00(✓) = � n

�2
< 0

for all ✓, we deduce from the second derivative test that the critical point
✓ = y is, in fact, where the global maximum occurs. Therefore,

✓̂MLE =
1

n

n

X

i=1

Y
i

= Y .

Example 6.8. If Y1, . . . , Yn

is a random sample from a population having
density

f(y|✓) = (✓ + 1)y✓, 0 < y < 1,

where ✓ > �1 is a parameter, determine ✓̂MLE, the maximum likelihood esti-
mator of ✓.

Solution. We begin by noting that the likelihood function is

L(✓) =
n

Y

i=1

f(y
i

|✓) =
n

Y

i=1

(✓ + 1)y✓
i

= (✓ + 1)n
 

n

Y

i=1

y
i

!

✓

for ✓ > 0 provided that 0 < y1 < 1, . . . , 0 < y
n

< 1. In order to maximize the
likelihood function L(✓), we will try to maximize the log-likelihood function
`(✓) instead.
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Therefore,

`(✓) = logL(✓) = n log(✓ + 1) + ✓

n

X

i=1

log y
i

and so

`0(✓) =
d

d✓
`(✓) =

n

✓ + 1
+

n

X

i=1

log y
i

.

Setting `0(✓) = 0 implies that

✓ = � n
n

X

i=1

log y
i

� 1

is the only critical point. Since

`00(✓) = � n

(✓ + 1)2
< 0

for all ✓, we deduce from the second derivative test that the critical point

✓ = � n
n

X

i=1

log y
i

� 1

is, in fact, where the global maximum occurs. Therefore,

✓̂MLE = � n
n

X

i=1

log Y
i

� 1.

It is perhaps worth noting that 0 <
Q

n

i=1 yi < 1 since 0 < y
i

< 1 for all i.
This implies that

n

X

i=1

log y
i

< 0.

Hence,

� n
n

X

i=1

log Y
i

> 0

which in turn implies that ✓̂MLE > �1 as required.

We end our study of maximum likelihood estimation with an example that
shows that determining the MLE is not always as simple as setting `0(✓) = 0
and solving.
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Example 6.9. If Y1, . . . , Yn

is a random sample from a Uniform(0, ✓) popu-
lation where ✓ > 0 is a parameter so that their common density is

f(y|✓) = 1

✓
, 0  y  ✓,

then

L(✓) =
n

Y

i=1

f(y
i

|✓) = ✓�n and `(✓) = logL(✓) = �n log ✓.

We see, however, that

`0(✓) = �n

✓

and so setting `0(✓) = 0 gives nonsense. Thus, we must be more careful. In
fact, we need to be more careful with our definition of L(✓). That is,

L(✓) =
n

Y

i=1

f(y
i

|✓)

where

f(y1|✓) = ✓�1, 0  y1  ✓,

f(y2|✓) = ✓�1, 0  y2  ✓,

...

f(y
n

|✓) = ✓�1, 0  y
n

 ✓,

and so
L(✓) = ✓�n

for ✓ > 0 provided that 0  y1  ✓, 0  y2  ✓, . . . , 0  y
n

 ✓. Note that
another way to write the constraint is as follows:

0  min{y1, . . . , yn}  max{y1, . . . , yn}  ✓.

Therefore, the likelihood function is

L(✓) = ✓�n for ✓ � max{y1, . . . , yn}

provided min{y1, . . . , yn} � 0. Recall that ✓̂MLE is that value of ✓ where the
maximum of L(✓) occurs. Since ✓�n is monotonically decreasing, its maximum
value necessarily occurs where ✓ is smallest; that is at ✓ = max{y1, . . . , yn}.
Thus,

✓̂MLE = max{Y1, . . . , Yn

}.


