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The Fisher Information and the Cramér-Rao

Inequality

Suppose that Y1, . . . , Yn

is a random sample from a population having a com-
mon density function f(y|✓) depending on a parameter ✓, the estimation of
which is desired. We have already seen a number of ways of measuring the
goodness of an estimator ✓̂ of ✓. In general, we prefer unbiased estimators
with as small a variance as possible. In fact, we would ideally like to find the
minimum variance unbiased estimator (or MVUE) of ✓.

The Cramér-Rao inequality gives a lower bound on the variance of any
unbiased estimator. In fact, this is how we can determine if an estimator ✓̂ is
truly the MVUE of ✓. If Var(✓̂) attains the Cramér-Rao lower bound, then it
must be the MVUE.

In order to state the Cramér-Rao inequality, we must first introduce the
Fisher information.

Definition 4.1. If the random variable Y has density function f(y|✓), then
the Fisher information is defined as

I(✓) := �E
✓

@2

@✓2
log f(Y |✓)

◆
.

Remark. It is important to pay attention to the symbols: we are starting with
the density function f(y|✓), and then taking its log, the second derivative with
respect to ✓, evaluating this expression at the random variable Y , and finally
taking the resulting expectation.

Remark. Although we have not stated it explicitly in the definition of the
Fisher information, some assumptions on the smoothness (continuity and dif-
ferentiability) of the density f(y|✓) as a function of ✓ are required. We will not
focus too much on such technicalities in Stat 252. It is perhaps worth noting
that the definition of the Fisher information involves the second derivative
with respect to ✓ of log f(y|✓) which implicitly assumes that log f(y|✓) is
twice-di↵erentiable!

Example 4.2. Suppose that Y ⇠ Exp(✓) for some parameter ✓ > 0. Calculate
I(✓).
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Solution. The density of Y is

f(y|✓) = 1

✓
e�y/✓, y > 0.

Therefore,

log f(y|✓) = � log ✓ � y

✓
so that

@

@✓
log f(y|✓) = �1

✓
+

y

✓2
and

@2

@✓2
log f(y|✓) = 1

✓2
� 2y

✓3
.

We now find the Fisher information is

I(✓)=�E
✓

@2

@✓2
log f(Y |✓)

◆
= E

✓
2Y

✓3
� 1

✓2

◆
=

2E(Y )

✓3
� 1

✓2
=

2✓

✓3
� 1

✓2
=

1

✓2
.

Example 4.3. Suppose that Y ⇠ N (✓,�2) where ✓ 2 R is a parameter and
�2 is known. Calculate I(✓).

Solution. The density of Y is

f(y|✓) = 1

�
p
2⇡

exp

⇢
� (y � ✓)2

2�2

�
, �1 < y < 1.

Note that the density only depends on ✓ since we are assuming that �2 is
known. Therefore,

log f(y|✓) = � log(�
p
2⇡)� (y � ✓)2

2�2

so that
@

@✓
log f(y|✓) = y � ✓

�2
and

@2

@✓2
log f(y|✓) = � 1

�2
.

We now find the Fisher information is

I(✓) = �E
✓

@2

@✓2
log f(Y |✓)

◆
= �E

✓
� 1

�2

◆
=

1

�2
.

We can now state the Cramér-Rao inequality.

Theorem 4.4 (Cramér-Rao Inequality). Suppose that Y1, . . . , Yn

is a random

sample from a population having a common density function f(y|✓) depending
on a parameter ✓, and let ✓̂ be an unbiased estimator of ✓ based on Y1, . . . , Yn

.

If f(y|✓) is a smooth function of y and ✓, then

Var(✓̂) � 1

nI(✓)
.

where the Fisher information I(✓) is given by

I(✓) := �E
✓

@2

@✓2
log f(Y |✓)

◆

for some random variable Y having density f(y|✓).
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Remark. The importance of this result is the following. Suppose that you
are able to find some estimator ✓̂ whose variance is Var(✓̂) = 1

nI(✓) . Since
you have found the estimator whose variance attends the lower bound of
the Cramér-Rao inequality your search for the minimum variance unbiased
estimator is over! It is not possible to find another unbiased estimator with
smaller variance.

Example 4.5. Suppose that Y1, . . . , Yn

is a random sample from an Exp(✓)
population depending on a parameter ✓ > 0. Prove that ✓̂ := Y is the mini-
mum variance unbiased estimator of ✓.

Solution. Since Y
i

⇠ Exp(✓), we know that E(Y
i

) = ✓ and Var(Y
i

) = ✓2 for
all i. Therefore, as in Theorem 2.8, if ✓̂ := Y , then E(✓̂) = E(Y1) = ✓ so that
✓̂ is, in fact, an unbiased estimator of ✓. Moreover, since Y1, . . . , Yn

are i.i.d.,
we also conclude using Theorem 2.8 that

Var(✓̂) =
1

n
Var(Y1) =

✓2

n
.

In Example 4.2 above we determined that I(✓) = ✓�2. Therefore,

1

nI(✓)
=

1

n✓�2
=

✓2

n
= Var(✓̂).

Since the lower bound of the Cramér-Rao inequality has been attained, we
conclude that Y must be the minimum variance unbiased estimator of ✓.

Example 4.6. Suppose that Y1, . . . , Yn

is a random sample from a N (✓,�2)
where �2 is known but ✓ 2 R is a parameter. Prove that ✓̂ := Y is the
minimum variance unbiased estimator of ✓.

Solution. Since Y
i

⇠ N (✓,�2), we know that E(Y
i

) = ✓ and Var(Y
i

) = �2

for all i. Therefore, as in Theorem 2.8, if ✓̂ := Y , then E(✓̂) = E(Y1) = ✓ so
that ✓̂ is, in fact, an unbiased estimator of ✓. Moreover, since Y1, . . . , Yn

are
i.i.d., we also conclude using Theorem 2.8 that

Var(✓̂) =
1

n
Var(Y1) =

�2

n
.

In Example 4.3 we determined that I(✓) = ��2. Therefore,

1

nI(✓)
=

1

n��2
=

�2

n
= Var(✓̂).

Since the lower bound of the Cramér-Rao inequality has been attained, we
conclude that Y must be the minimum variance unbiased estimator of ✓.


