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Evaluating the Goodness of an Estimator:
Bias, Mean-Square Error, Relative E�ciency

Consider a population parameter ✓ for which estimation is desired. For ex-
ample, ✓ could be the population mean (traditionally called µ) or the popu-
lation variance (traditionally called �2). Or it might be some other parame-
ter of interest such as the population median, population mode, population
standard deviation, population minimum, population maximum, population
range, population kurtosis, or population skewness.

As previously mentioned, we will regard parameters as numerical charac-
teristics of the population of interest; as such, a parameter will be a fixed
number, albeit unknown. In Stat 252, we will assume that our population has
a distribution whose density function depends on the parameter of interest.
Most of the examples that we will consider in Stat 252 will involve continuous
distributions.

Definition 3.1. An estimator ✓̂ is a statistic (that is, it is a random variable)
which after the experiment has been conducted and the data collected will be
used to estimate ✓.

Since it is true that any statistic can be an estimator, you might ask why we
introduce yet another word into our statistical vocabulary. Well, the answer is
quite simple, really. When we use the word estimator to describe a particular
statistic, we already have a statistical estimation problem in mind.

For example, if ✓ is the population mean, then a natural estimator of ✓ is
the sample mean. If ✓ is the population variance, then a natural estimator of ✓
is the sample variance. More specifically, suppose that Y1, . . . , Yn are a random
sample from a population whose distribution depends on the parameter ✓. The
following estimators occur frequently enough in practice that they have special
notations.

• sample mean: Y :=
1

n

n
X

i=1

Yi

• sample variance: S2 :=
1

n� 1

n
X

i=1

(Yi � Y )2
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• sample standard deviation: S =
p
S2 � 0

• sample minimum: Y(1) := min{Y1, . . . , Yn}
• sample maximum: Y(n) := max{Y1, . . . , Yn}
• sample range: R = Y(n) � Y(1)

For example, suppose that we are interested in the estimation of the popu-
lation minimum. Our first choice of estimator for this parameter should prob-
ably be the sample minimum. Only once we’ve analyzed the sample minimum
can we say for certain if it is a good estimator or not, but it is certainly a
natural first choice. But the sample mean Y is also an estimator of the popu-
lation minimum. Indeed, any statistic is an estimator. However, even without
any analysis, it seems pretty clear that the sample mean is not going to be a
very good choice of estimator of the population minimum. And so this is why
we introduce the word estimator into our statistical vocabulary.

Notation. In Stat 251, if we assumed that the random variable Y had an
Exp(✓) distribution, then we would write the density function of Y as

fY (y) =

(

✓e�✓y, y > 0,

0, y  0.

In Stat 252, to emphasize the dependence of the distribution on the parameter,
we will write the density function of Y as

f(y|✓) =
(

✓e�✓y, y > 0,

0, y  0.

In Stat 252, the estimation problem will most commonly take the following
form. Suppose that ✓ is the parameter of interest. We will take Y1, . . . , Yn to
be a random sample with common density f(y|✓), and we will find a suit-
able estimator ✓̂ = g(Y1, . . . , Yn) for some real-valued function of the random
sample g.

Three of the measures that we will use to assess the goodness of an esti-
mator are its bias, its mean-square error, and its standard error.

Definition 3.2. If ✓̂ is an estimator of ✓, then the bias of ✓ is given by

B(✓̂) := E(✓̂)� ✓

and the mean-square error of ✓̂ is given by

MSE(✓̂) := E(✓̂ � ✓)2.

We say that ✓̂ is unbiased if B(✓̂) = 0.

Exercise 3.3. Show that MSE(✓̂) = Var(✓̂)+ [B(✓̂)]2. In particular, conclude
that if ✓̂ is unbiased, then MSE(✓̂) = Var(✓̂).
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Definition 3.4. If ✓̂ is an estimator of ✓, then the standard error of ✓̂ is

simply its standard deviation. We write �✓̂ :=
q

Var(✓̂).

Example 3.5. Let Y1, . . . , Yn be a random sample from a population whose
density is

f(y|✓) =
(

3✓3y�4, ✓  y,

0, otherwise,

where ✓ > 0 is a parameter. Suppose that we wish to estimate ✓ using the
estimator ✓̂ = min{Y1, . . . , Yn}.

(a) Compute B(✓̂), the bias of ✓̂.
(b) Compute MSE(✓̂), the mean-square error of ✓̂.
(c) Compute �✓̂, the standard error of ✓̂.

Solution. (a) Since B(✓̂) = E(✓̂) � ✓, we must first compute E(✓̂). To de-
termine E(✓̂), we need to find the density function of ✓̂, which requires
us first to find the distribution function of ✓̂. As we know from Stat 251,
there is a “trick” for computing the distribution function of a minimum
of random variables. That is, since Y1, . . . , Yn are i.i.d., we find

P (✓̂ > x) = P (min{Y1, . . . , Yn} > x) = P (Y1 > x, . . . , Yn > x)

= [P (Y1 > x)]n.

We know the density of Y1, and so if x � ✓, we compute

P (Y1 > x) =

Z 1

x

f(y|✓) dy =

Z 1

x

3✓3y�4 dy = ✓3x�3.

Therefore, we find

P (✓̂ > x) = [P (Y1 > x)]n = ✓3nx�3n for x � ✓

and so the distribution function for ✓̂ is

F (x) = P (✓̂  x) = 1� P (✓̂ > x) = 1� ✓3nx�3n

for x � ✓, and F (x) = 0 for x < ✓. Finally, we di↵erentiate to conclude
that the density function for ✓̂ is

f(x) = F 0(x) =

(

3n✓3nx�3n�1, x � ✓

0, x < ✓.

Now we can determine E(✓̂) via
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E(✓̂) =
Z 1

�1
x · f(x) dx =

Z 1

✓

x · 3n✓3nx�3n�1 dx = 3n✓3n
Z 1

✓

x�3n dx

= 3n✓3n · ✓
�3n+1

3n� 1

=
3n

3n� 1
✓.

Hence, the bias of ✓̂ is given by

B(✓̂) = E(✓̂)� ✓ =
3n

3n� 1
✓ � ✓ =

✓

3n� 1
.

(b) As for the mean-square error, we have by definition MSE(✓̂) = E(✓̂ � ✓)2

and so

MSE(✓̂) =

Z 1

�1
(x� ✓)2f(x) dx =

Z 1

✓

(x� ✓)2 · 3n✓3nx�3n�1 dx

= 3n✓3n


Z 1

✓

x1�3n dx� 2✓

Z 1

✓

x�3n dx+ ✓2
Z 1

✓

x�3n�1 dx

�

= 3n✓3n


✓2�3n

3n� 2
� 2✓ · ✓1�3n

3n� 1
+ ✓2 · ✓

�3n

3n

�

= 3n✓2


1

3n� 2
� 2

3n� 1
+

1

3n

�

= ✓2


(3n� 1)(3n� 2)� 9n(n� 1)

(3n� 1)(3n� 2)

�

=
2✓2

(3n� 1)(3n� 2)
.

(c) From the previous exercise, we know that MSE(✓̂) = Var(✓̂)+ [B(✓̂)]2 and
so

Var(✓̂) = MSE(✓̂)� [B(✓̂)]2 =
2✓2

(3n� 1)(3n� 2)
�


✓

3n� 1

�2

=
✓2

3n� 1



2

3n� 2
� 1

3n� 1

�

=
3n✓2

(3n� 1)2(3n� 2)
.

Therefore, the standard error of ✓̂ is

�✓̂ =
q

Var(✓̂) =
✓

(3n� 1)

r

3n

3n� 2
.

Example 3.5 (continued). Observe that ✓̂ is not unbiased; that is, B(✓̂) 6=
0. According to our Stat 252 criterion for evaluating estimators, this particular
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✓̂ is not preferred. However, as we will learn later on, it might not be possible
to find any unbiased estimators of ✓. Thus, we will be forced to settle on one
which is biased. Since

lim
n!1

B(✓̂) = lim
n!1

✓

3n� 1
= 0

we say that ✓̂ is asymptotically unbiased. If no unbiased estimators can be
found, the next best thing is to find asymptotically unbiased estimators.

Definition 3.6. If ✓̂1 and ✓̂2 are both unbiased estimators of ✓, then the
e�ciency of ✓̂1 relative to ✓̂2 is

E↵(✓̂1, ✓̂2) :=
Var(✓̂2)

Var(✓̂1)
.

Remark. We can use the relative e�ciency to decide which of the two unbi-
ased estimators is preferred.

• If

E↵(✓̂1, ✓̂2) =
Var(✓̂2)

Var(✓̂1)
> 1,

then Var(✓̂2) > Var(✓̂1). Thus, ✓̂1 has smaller variance that ✓̂2, and so ✓̂1
is preferred.

• On the other hand, if

E↵(✓̂1, ✓̂2) =
Var(✓̂2)

Var(✓̂1)
< 1,

then Var(✓̂2) < Var(✓̂1). Thus, ✓̂2 has smaller variance that ✓̂1, and so ✓̂2
is preferred.

Example 3.7. Suppose that Y1, . . . , Yn are a random sample from a Uniform(0, ✓)
population where ✓ > 0 is a parameter. As you will show on Assignment #2,
both

✓̂1 := 2Y and ✓̂2 := (n+ 1)min{Y1, . . . , Yn}

are unbiased estimators of ✓. Compute E↵(✓̂1, ✓̂2), and decide which estimator
is preferred.

Solution. Since the random variables Y1, . . . , Yn have common density

f(y|✓) =
(

1/✓, 0  y  ✓,

0, otherwise,

we deduce E(Yi) = ✓/2 and Var(Yi) = ✓2/12 for all i. Since Y1, . . . , Yn are
i.i.d., we find



18 3 Evaluating the Goodness of an Estimator: Bias, Mean-Square Error, Relative E�ciency

Var(✓̂1) = Var(2Y ) = 4Var(Y ) =
4

n
Var(Y1) =

4✓2

12n
=

✓2

3n
.

As for ✓̂2, recall that the density of Y(1) := min{Y1, . . . , Yn} is

fY(1)
(x|✓) =

(

n✓�n(✓ � x)n�1, 0  x  ✓,

0, otherwise,

so that

E(Y(1)) =
✓

n+ 1

and

Var(Y(1)) =

Z ✓

0

✓

x� ✓

n+ 1

◆2

n✓�n(✓�x)n�1 dx =
2✓2

(n+ 1)(n+ 2)
� ✓2

(n+ 1)2
.

Therefore,

Var(✓̂2) = (n+ 1)2 Var(Y(1)) =
n✓2

n+ 2
.

We now find

E↵(✓̂1, ✓̂2) =
Var(✓̂2)

Var(✓̂1)
=

n✓2

n+2

✓2

3n

=
3n2

n+ 2
> 1

provided n > 1. Since E↵(✓̂1, ✓̂2) > 1, we conclude that Var(✓̂2) > Var(✓̂1) so
that ✓̂1 = 2Y is preferred to ✓̂2 = (n+ 1)min{Y1, . . . , Yn}.

Example 3.8. Suppose that Y1, . . . , Yn are a random sample with a common
density depending on a parameter ✓. Suppose further that ✓̂1 and ✓̂2 are both
unbiased estimators of ✓ based on Y1, . . . , Yn, and that

E↵(✓̂1, ✓̂2) =
Var(✓̂2)

Var(✓̂1)
=

2n3 + 5n+ 1

2n3 + n2 � 1
.

Which estimator is preferred?

Solution. We notice that 2n3 + 5n+ 1 < 2n3 + n2 � 1 if and only if n > 5.
Therefore, if the sample size is n = 1, 2, 3, 4, or 5, then ✓̂1 is preferred, but if
n > 5, then ✓̂2 is preferred


