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Definition 2.2. An estimator ✓̂ is a statistic (that is, it is a random vari-
able) which after the experiment has been conducted and the data has been
collected will be used to estimate ✓.

Example 2.3. Recall that if Y ⇠ Exp(1/✓), then Y has density function

fY (y) =

8

<

:

1

✓
e�y/✓, y > 0,

0, y  0,

and so

E(Y ) =

Z 1

�1
yfY (y) dy =

Z 1

0

y

✓
e�y/✓ dy = ✓

Z 1

0

ue�u du = ✓� (2) = ✓.

Suppose that Y1, Y2, Y3 are a random sample from an Exp(1/✓) population
and that estimation of ✓ is desired. In particular, ✓ is the population mean.
The natural question, therefore, is what should be used as an estimator of
✓? A similar question was asked in Example 2.1 and, as in that example, two
possible estimators of ✓ are the sample median and the sample mean. Consider
the sample mean

✓̂ :=
Y1 + Y2 + Y3

3
.

Is this a good estimator of ✓? Is there a better estimator of ✓? Since the
population distribution is skewed, the rule from Stat 160 suggests that the
sample median is a better measure of centre than the sample mean. Is it? And
how should we go about verifying this.

In fact, both the previous example and Example 2.1 suggest the following.

Question. What does it mean for an estimator to be good? What does it
mean for one estimator to be better than another estimator? How should we
chose estimators?

Classical Statistics Answer. We choose the “minimum variance unbiased
estimator” (MVUE) as our preferred estimator. In general, this will be our
criterion. We will search for unbiased estimators, and then we will select the
unbiased estimator whose variance is the smallest.

Hence, we begin by defining what it means for an estimator to be unbiased.
Recall that an estimator is a statistic (and hence a random variable) so that
we can take its expectation, and that a parameter is not a random variable,
but just a number.

Definition 2.4. If ✓̂ is an estimator of ✓, then the bias of ✓̂ is

B(✓̂) := E(✓̂)� ✓.

We say that ✓̂ is an unbiased estimator of ✓ if B(✓̂) = 0.

Note that ✓̂ is an unbiased estimator of ✓ if and only if E(✓̂) = ✓.
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Example 2.5. As a first example, we will show that if Y1, . . . , Yn are a random
sample from a population whose population mean is µ, then the sample mean

Y :=
1

n

n
X

i=1

Yi

is always an unbiased estimator of µ. That is, since E(Y1) = · · · = E(Yn) = µ
by assumption, we deduce that

E(Y ) = E
 

1

n

n
X

i=1

Yi

!

=
1

n

n
X

i=1

E(Yi) =
1

n
(µ+ · · ·+ µ) =

nµ

n
= µ.

That is, if ✓ := µ and ✓̂ := Y , then

B(✓̂) = E(✓̂)� ✓ = E(Y )� µ = µ� µ = 0.

Actually, this example is so important that we record it as a theorem.

Theorem 2.6. The sample mean is an unbiased estimator of the population
mean.

Example 2.7. We now revisit Example 2.3. If Y1, Y2, Y3 are a random sample
from an Exp(1/✓) population, then the sample mean

✓̂ :=
Y1 + Y2 + Y3

3

is an unbiased estimator of ✓ since

E(✓̂) = E
✓

Y1 + Y2 + Y3

3

◆

=
E(Y1) + E(Y2) + E(Y3)

3
=

✓ + ✓ + ✓

3
=

3✓

3
= ✓.

As we know from Stat 251, we can also compute the variance of the sample
mean.

Theorem 2.8. Suppose that Y1, . . . , Yn are a random sample from a popula-
tion having common mean µ and common variance �2. If

Y :=
1

n

n
X

i=1

Yi

denotes the sample mean, then

Var(Y ) =
�2

n
.

Proof. Since Y1, . . . , Yn are independent, we deduce that

Var
�

Y
�

= Var

 

1

n

n
X

i=1

Yi

!

=
1

n2
Var

 

n
X

i=1

Yi

!

=
1

n2

n
X

i=1

Var(Yi),
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and since Var(Y1) = · · ·Var(Yn) = �2, we conclude

Var
�

Y
�

=
�2 + · · ·+ �2

n2
=

n�2

n2
=

�2

n

as required. ut

Using this result, we can show that the sample variance is an unbiased
estimator of the population variance.

Example 2.9. Show that if Y1, Y2, . . . , Yn is a random sample from a popu-
lation with mean µ and variance �2, then

S2 :=
1

n� 1

n
X

i=1

(Yi � Y )2

is an unbiased estimator of �2. This illustrates one reason for dividing by
n� 1 in the definition of the sample variance S2, instead of dividing by (the
seemingly more natural) n.

Solution. We begin by observing that (Yi � Y )2 = Y 2
i � 2Y Yi + Y

2
and so

n
X

i=1

(Yi � Y )2 =
n
X

i=1

(Y 2
i � 2Y Yi + Y

2
) =

n
X

i=1

Y 2
i � 2

n
X

i=1

Y Yi +
n
X

i=1

Y
2

=
n
X

i=1

Y 2
i � 2Y

n
X

i=1

Yi + nY
2

=
n
X

i=1

Y 2
i � 2nY

2
+ nY

2

=
n
X

i=1

Y 2
i � nY

2
.

We now observe

E
 

n
X

i=1

(Yi � Y )2
!

= E
 

n
X

i=1

Y 2
i � nY

2

!

=
n
X

i=1

E(Y 2
i )� nE(Y 2

). (2.1)

If X is any random variable, then E(X2) = Var(X) + [E(X)]2. This implies
that E(Y 2

i ) = Var(Y1) + [E(Yi)]2 = �2 + µ2 and

E(Y 2
) = Var(Y ) + E(Y )2 =

�2

n
+ µ2.

Therefore, substituting into (2.1), we find

E
 

n
X

i=1

(Yi � Y )2
!

=
n
X

i=1

(�2+µ2)�n

✓

�2

n
+ µ2

◆

= n�2+nµ2��2�nµ2 = (n�1)�2
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and so

E(S2) = E
 

1

n� 1

n
X

i=1

(Yi � Y )2
!

=
1

n� 1
· (n� 1)�2 = �2.

Thus, we have shown that S2 is an unbiased estimator of �2 as required.


