Stat 252 Winter 2016
Solutions to Assignment \#7

1. (a) Recall that the generalized likelihood ratio test for the simple null hypothesis $H_{0}: \theta=\theta_{0}$ against the composite alternative hypothesis $H_{A}: \theta \neq \theta_{0}$ has rejection region $\{\Lambda<c\}$ where

$$
\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\hat{\theta}_{\mathrm{MLE}}\right)}
$$

is the generalized likelihood ratio and $L(\theta)$ is the likelihood function. In this instance,

$$
L(\theta)=\theta^{n} \exp \left\{-\theta \sum_{i=1}^{n} y_{i}\right\}
$$

so that

$$
\begin{aligned}
\Lambda & =\frac{\theta_{0}^{n} \exp \left\{-\theta_{0} \sum_{i=1}^{n} y_{i}\right\}}{\hat{\theta}_{\mathrm{MLE}}^{n} \exp \left\{-\hat{\theta}_{\mathrm{MLE}} \sum_{i=1}^{n} y_{i}\right\}}=\left(\frac{\theta_{0}}{1 / \bar{Y}}\right)^{n} \exp \left\{-\theta_{0} \sum y_{i}+1 / \bar{Y} \cdot \sum y_{i}\right\} \\
& =\left(\theta_{0} \bar{Y}\right)^{n} \exp \left\{n-n \theta_{0} \bar{Y}\right\}=e^{n} \theta_{0}^{n} \bar{Y}^{n} \exp \left\{-n \theta_{0} \bar{Y}\right\}=e^{n} \theta_{0}^{n}\left[\bar{Y} \exp \left\{-\theta_{0} \bar{Y}\right\}\right]^{n}
\end{aligned}
$$

Hence, we see that the rejection region $\{\Lambda<c\}$ can be expressed as

$$
\begin{aligned}
\left\{e^{n} \theta_{0}^{n}\left[\bar{Y} \exp \left\{-\theta_{0} \bar{Y}\right\}\right]^{n}<c\right\} & =\left\{\bar{Y} \exp \left\{-\theta_{0} \bar{Y}\right\}<c^{1 / n} e^{-1} \theta_{0}^{-1}\right\} \\
& =\left\{\bar{Y} \exp \left\{-\theta_{0} \bar{Y}\right\}<C\right\} .
\end{aligned}
$$

(To be explicit, the suitable constant is $C=c^{1 / n} e^{-1} \theta_{0}^{-1}$.)

1. (b) We saw in class that $-2 \log \Lambda \sim \chi^{2}(1)$ (approximately). This means that the generalized likelihood ratio test rejection region is $\{\Lambda<c\}=\{-2 \log \Lambda>K\}$ where K is (yet another) constant. As we found above,

$$
\Lambda=e^{n} \theta_{0}^{n}\left[\bar{Y} \exp \left\{-\theta_{0} \bar{Y}\right\}\right]^{n}
$$

so that

$$
-2 \log \Lambda=-2 n-2 n \log \theta_{0}-2 n \log \bar{Y}+2 n \theta_{0} \bar{Y}
$$

Hence, to conduct the GLRT, we need to compare the observed value of $-2 \log \Lambda$ with the appropriate chi-squared critical value which is $\chi_{0.10,1}^{2}=2.70554$. Since

$$
-2 \cdot 10-2 \cdot 10 \log 1-2 \cdot 10 \cdot \log 1.25+2 \cdot 10 \cdot 1 \cdot 1.25 \approx 2.76856
$$

is the observed value of $-2 \log \Lambda$, we reject H_{0} at significance level 0.10 . (Note, however, that since $\chi_{0.05,1}^{2}=3.84146$, we fail to reject H_{0} at significance level 0.05.)
2. (a) Recall that the generalized likelihood ratio test for the simple null hypothesis $H_{0}: \theta=\theta_{0}$ against the composite alternative hypothesis $H_{A}: \theta \neq \theta_{0}$ has rejection region $\{\Lambda<c\}$ where

$$
\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\hat{\theta}_{\mathrm{MLE}}\right)}
$$

is the generalized likelihood ratio and $L(\theta)$ is the likelihood function. In this instance,

$$
L(\theta)=\theta^{2 n}\left(\prod_{i=1}^{n} y_{i}\right) \exp \left\{-\theta \sum_{i=1}^{n} y_{i}\right\}
$$

so that

$$
\begin{aligned}
\Lambda=\frac{\theta_{0}^{2 n}\left(\prod_{i=1}^{n} y_{i}\right) \exp \left\{-\theta_{0} \sum_{i=1}^{n} y_{i}\right\}}{\hat{\theta}_{\mathrm{MLE}}^{2 n}\left(\prod_{i=1}^{n} y_{i}\right) \exp \left\{-\hat{\theta}_{\mathrm{MLE}} \sum_{i=1}^{n} y_{i}\right\}} & =\left(\frac{1}{2 / \bar{Y}}\right)^{2 n} \exp \left\{-\sum y_{i}+2 / \bar{Y} \cdot \sum y_{i}\right\} \\
& =\left(\frac{\bar{Y}}{2}\right)^{2 n} \exp \{2 n-n \bar{Y}\}
\end{aligned}
$$

2. (b) We saw in class that $-2 \log \Lambda \sim \chi^{2}(1)$ (approximately). This means that the generalized likelihood ratio test rejection region is $\{\Lambda<c\}=\{-2 \log \Lambda>K\}$ where $K=-2 \log c$ is (yet another) constant. (In fact, $K=\chi_{\alpha, 1}^{2}$.) As we found above,

$$
\Lambda=\left(\frac{\bar{Y}}{2}\right)^{2 n} \exp \{2 n-n \bar{Y}\}
$$

so that

$$
-2 \log \Lambda=-4 n \log \bar{Y}+4 n \log 2-4 n+2 n \bar{Y}
$$

Hence, to conduct the GLRT, we need to compare the observed value of $-2 \log \Lambda$ with the appropriate chi-squared critical value which is $\chi_{0.05,1}^{2}=3.84146$. Since

$$
-4 \cdot 5 \cdot \log 1+4 \cdot 5 \cdot \log 2-4 \cdot 5+2 \cdot 5 \cdot 1 \approx 3.8629
$$

is the observed value of $-2 \log \Lambda$, we reject H_{0} at significance level 0.05 (but just barely).
3. Suppose that $Y \sim \operatorname{Bin}(n, \theta)$ with $\theta \sim \beta(a, b)$ so that

$$
g(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, \quad 0 \leq \theta \leq 1 .
$$

The posterior density satisfies

$$
f(\theta \mid y) \propto f(y \mid \theta) g(\theta) \propto \theta^{y}(1-\theta)^{n-y} \theta^{a-1}(1-\theta)^{b-1}=\theta^{y+a-1}(1-\theta)^{n-y+b-1}
$$

from which we conclude that the posterior distribution of θ given y is $\beta(y+a, n-y+b)$.
4. If $Y_{1}, \ldots Y_{n}$ are i.i.d. Poisson (θ) random variables, then

$$
L(\theta)=f\left(y_{1}, \ldots, y_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\frac{1}{y_{1}!\cdots y_{n}!} e^{-n \theta} \theta^{y_{1}+\cdots+y_{n}} .
$$

If the prior distribution of θ is $\Gamma(\alpha, \beta)$, then

$$
f\left(\theta \mid y_{1}, \ldots, y_{n}\right) \propto f\left(y_{1}, \ldots, y_{n} \theta\right) g(\theta) \propto e^{-n \theta} \theta^{y_{1}+\cdots+y_{n}} \cdot \theta^{\alpha-1} e^{-\theta / \beta}=e^{-\theta(n+1 / \beta)} \theta^{\alpha-1+y_{1}+\cdots+y_{n}}
$$

which implies that the posterior distribution of θ given $\left(y_{1}, \ldots, y_{n}\right)$ is

$$
\Gamma\left(\alpha+\sum_{i=1}^{n} y_{i}, \frac{1}{n+1 / \beta}\right)
$$

5. (a) An expression for the posterior density is

$$
f(\theta \mid y)=\frac{f(y \mid \theta) g(\theta)}{\int_{-\infty}^{\infty} f(y \mid \theta) g(\theta) \mathrm{d} \theta}=\frac{\frac{1}{\theta} \exp \left\{-\theta^{2}-y^{2} / \theta\right\}}{\int_{0}^{\infty} \frac{1}{\theta} \exp \left\{-\theta^{2}-y^{2} / \theta\right\} \mathrm{d} \theta}
$$

5. (b) If $y=1$, then

$$
f(\theta \mid y=1)=\frac{\frac{1}{\theta} \exp \left\{-\theta^{2}-1 / \theta\right\}}{\int_{0}^{\infty} \frac{1}{\theta} \exp \left\{-\theta^{2}-1 / \theta\right\} \mathrm{d} \theta}
$$

Using MAPLE

```
> evalf(Int(exp(-x^2-1/x)/x, x=0..infinity));
> 0.1869287323
```

we find

$$
\int_{0}^{\infty} \frac{1}{\theta} \exp \left\{-\theta^{2}-1 / \theta\right\} \mathrm{d} \theta=0.1869287323
$$

and so

$$
f(\theta \mid y=1)=\frac{1}{0.1869287323 \theta} \cdot \exp \left\{-\theta^{2}-1 / \theta\right\}=\frac{5.349632385}{\theta} \cdot \exp \left\{-\theta^{2}-1 / \theta\right\}, \quad \theta>0 .
$$

