Stat 252 Winter 2016
Solutions to Assignment \#6

1. (a) Since $\log f(y \mid \theta)=y \log (\theta)-y-\log (y!)$ we find

$$
\frac{\partial}{\partial \theta} \log f(y \mid \theta)=\frac{y}{\theta} \quad \text { and } \quad \frac{\partial^{2}}{\partial \theta^{2}} \log f(y \mid \theta)=-\frac{y}{\theta^{2}}
$$

Thus,

$$
I(\theta)=-\mathbb{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(Y \mid \theta)\right)=\frac{\mathbb{E}(Y)}{\theta^{2}}=\frac{\theta}{\theta^{2}}=\frac{1}{\theta}
$$

1. (b) If $Y \sim \operatorname{Poisson}(\theta)$, then since $\mathbb{E}(Y)=\theta$, setting $\mathbb{E}(Y)=\bar{Y}$ gives $\hat{\theta}_{\text {MOM }}=\bar{Y}$.
2. (c) Since $\mathbb{E}\left(Y_{1}\right)=\theta$, we conclude that

$$
\mathbb{E}\left(\hat{\theta}_{\mathrm{MOM}}\right)=\mathbb{E}(\bar{Y})=\mathbb{E}\left(\frac{Y_{1}+\cdots+Y_{n}}{n}\right)=\mathbb{E}\left(Y_{1}\right)=\theta
$$

so that $\hat{\theta}_{\mathrm{MOM}}$ is an unbiased estimator of θ.

1. (d) Since $\operatorname{Var}\left(Y_{1}\right)=\theta$, and since the Y_{i} are i.i.d., we conclude

$$
\operatorname{Var}\left(\hat{\theta}_{\mathrm{MOM}}\right)=\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{Y_{1}+\cdots+Y_{n}}{n}\right)=\frac{\operatorname{Var}\left(Y_{1}\right)}{n}=\frac{\theta}{n} .
$$

1. (e) The Cramer-Rao inequality tells us that an unbiased estimator $\hat{\theta}$ of θ must satisfy

$$
\operatorname{Var}(\hat{\theta}) \geq \frac{1}{n I(\theta)}=\frac{\theta}{n}
$$

since we found in (a) that $I(\theta)=1 / \theta$. From (c) we know that $\hat{\theta}_{\text {MOM }}$ is unbiased, and from (d) we know that $\operatorname{Var}\left(\hat{\theta}_{\mathrm{MOM}}\right)=\theta / n$. Since we have found an unbiased estimator, namely $\hat{\theta}_{\mathrm{MOM}}$, whose variance attains the lower bound of the Cramer-Rao inequality, we conclude that $\hat{\theta}_{\text {MOM }}$ must be the MVUE of θ.
2. (a) By definition, the significance level α is the probability of a Type I error; that is, the probability under H_{0} that H_{0} is rejected. Hence, since $\frac{4 S^{2}}{\sigma^{2}} \sim \chi^{2}(4)$, we conclude

$$
\begin{aligned}
\alpha=P_{H_{0}}\left(\text { reject } H_{0}\right)=P\left(S^{2}>1.945 \mid \sigma^{2}=1\right) & =P\left(\frac{4 S^{2}}{1}>\frac{4 \cdot 1.945}{1}\right) \\
& =P(X>7.78) \doteq 0.10,
\end{aligned}
$$

where $X \sim \chi^{2}(4)$. (The last step follows from a table of chi-squared values.) Hence, we see that the hypothesis test does, in fact, have significance level $\alpha=0.10$.
2. (b) By definition, the power of a test is the probability under H_{A} that H_{0} is rejected. Hence, when $\sigma=3.3$, we find

$$
\begin{aligned}
\text { power }=P_{H_{A}}\left(\text { reject } H_{0}\right)=P\left(S^{2}>1.945 \mid \sigma^{2}=3.3^{2}\right) & =P\left(\frac{4 S^{2}}{3.3^{2}}>\frac{4 \cdot 1.945}{3.3^{2}}\right) \\
& \doteq P(X>0.71) \doteq 0.95
\end{aligned}
$$

where $X \sim \chi^{2}(4)$. (The last step follows from a table of chi-squared values.) Hence, the power of this test when $\sigma=3.3$ is 0.95 .
3. (a) Since the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\theta^{2 n}\left(\prod_{i=1}^{n} y_{i}\right)^{-3 n} \exp \left\{-\theta \sum_{i=1}^{n} \frac{1}{y_{i}}\right\},
$$

if we let $u=\sum_{i=1}^{n} \frac{1}{y_{i}}$, then we can write $L(\theta)=g(u, \theta) \cdot h\left(y_{1}, \ldots, y_{n}\right)$ where

$$
h\left(y_{1}, \ldots, y_{n}\right)=\left(\prod_{i=1}^{n} y_{i}\right)^{-3 n} \text { and } g(u, \theta)=\theta^{2 n} \exp \{-\theta u\}
$$

so by the Factorization Theorem we conclude that $\sum_{i=1}^{n} \frac{1}{Y_{i}}$ is a sufficient statistic for the estimation of θ.
3. (b) Recall from class that any one-to-one function of a sufficient statistic is also sufficient. Therefore, if we let

$$
T(U)=\frac{2 n}{U}
$$

then since T is one-to-one, we find that

$$
T\left(\sum_{i=1}^{n} \frac{1}{Y_{i}}\right)=\frac{2 n}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}=\hat{\theta}_{\mathrm{MLE}}
$$

is also a sufficient statistic for the estimation of θ.
3. (c) Since $\log f(y \mid \theta)=2 \log (\theta)-3 \log (y)-\frac{\theta}{y}$, we find

$$
\frac{\partial}{\partial \theta} \log f(y \mid \theta)=\frac{2}{\theta}-\frac{1}{y} \quad \text { and } \quad \frac{\partial^{2}}{\partial \theta^{2}} \log f(y \mid \theta)=-\frac{2}{\theta^{2}} .
$$

Thus,

$$
I(\theta)=-\mathbb{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(Y \mid \theta)\right)=\frac{2}{\theta^{2}} .
$$

3. (d) An approximate 90% confidence interval for θ based on the MLE and Fisher Information is

$$
\left[\hat{\theta}_{\mathrm{MLE}}-z_{0.05} \frac{1}{\sqrt{n I\left(\hat{\theta}_{\mathrm{MLE}}\right)}}, \hat{\theta}_{\mathrm{MLE}}+z_{0.05} \frac{1}{\sqrt{n I\left(\hat{\theta}_{\mathrm{MLE}}\right)}}\right]
$$

which in this case equals

$$
\left[\frac{2 n}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}-1.645 \cdot \frac{\sqrt{2 n}}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}, \frac{2 n}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}+1.645 \cdot \frac{\sqrt{2 n}}{\sum_{i=1}^{n} \frac{1}{Y_{i}}}\right]
$$

3. (e) The rejection region of a significance level 0.10 test of $H_{0}: \theta=\theta_{0}$ vs. $H_{A}: \theta \neq \theta_{0}$ based on the Fisher information and the MLE is

$$
\left\{\sqrt{n I\left(\hat{\theta}_{\mathrm{MLE}}\right)}\left|\hat{\theta}_{\mathrm{MLE}}-\theta_{0}\right|>z_{0.05}\right\} \quad \text { which in this case equals } \quad\left\{\left|\sqrt{2 n}-\frac{\theta_{0}}{\sqrt{2 n}} \sum_{i=1}^{n} \frac{1}{Y_{i}}\right|>1.645\right\}
$$

4. As a result of the confidence interval-hypothesis test duality, we know that the rejection region for the level 0.10 test of $H_{0}: \theta=4$ vs. $H_{A}: \theta \neq 4$ is $R R=\{4 \notin(Y-2, Y+3)\}$. That is, we reject H_{0} in favour of H_{A} if $4<Y-2$ or $Y+3<4$. In other words, $R R=\{Y<1$ or $Y>6\}$.
5. (a) By definition, the significance level α is the probability of a Type I error; that is, the probability under H_{0} that H_{0} is rejected, or $\alpha=P_{H_{0}}$ (reject $\left.H_{0}\right)=P(Y>c \mid \theta=1)$. If we assume that Y is Uniform $(0,1)$, then $P(Y>c)=1-c$ so that in order to have a significance level 0.05 test, we need $c=0.95$.
6. (b) By definition, the power of a test is the probability under H_{A} that H_{0} is rejected. That is, power $=P_{H_{A}}\left(\right.$ reject $\left.H_{0}\right)=P(Y>0.95 \mid \theta)$. If we assume that Y is Uniform $[0, \theta]$, then

$$
P(Y>0.95 \mid \theta)=\frac{\theta-0.95}{\theta}=1-\frac{19}{20 \theta}
$$

