Stat 252 Winter 2016
Solutions to Assignment \#1

1. (a) Let X denote the size of a randomly sampled adult male's foot so that X is normally distributed with mean 25 and standard deviation 3 . Therefore,

$$
P(22<X<28)=P\left(\frac{22-25}{3}<\frac{X-25}{3}<\frac{28-25}{3}\right)=P(-1<Z<1) \doteq 0.683
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from a table of z-values.

1. (b) If \bar{X} denotes the average size of a randomly selected adult male's foot, then X is normally distributed with mean 25 and standard deviation $3 / \sqrt{100}=0.3$. Therefore,

$$
P(24.7<\bar{X}<25.3)=P\left(\frac{24.7-25}{0.3}<\frac{\bar{X}-25}{0.3}<\frac{25.3-25}{0.3}\right)=P(-1<Z<1) \doteq 0.683
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from a table of z-values as in (a) above.
2. (a) Write the values in order: $150,180,190,230,250,250,280,300,340,380$. The sample median is just the average of the two middle numbers. Since these two numbers are both 250 , the sample median is 250 . The sample mean is a simple calculation: $(150+180+190+230+250+$ $250+280+300+340+380) / 10=255$. The sample standard deviation is calculated just as easily:

$$
\sqrt{\frac{697300-\frac{2550^{2}}{10}}{9}} \doteq 72
$$

2. (b) For Bright Idea Lighting, if X_{1} denotes the lifetime of a randomly selected bulb, then X_{1} is normal with mean 262 and standard deviation 41 implying

$$
P\left(X_{1}>350\right)=P\left(Z>\frac{350-262}{41}\right) \doteq P(Z>2.15) \doteq 0.0158
$$

For The Electric Company, if X_{2} denotes the lifetime of a randomly selected bulb, then X_{2} is approximately normal with mean 255 and standard deviation 72 implying

$$
P\left(X_{2}>350\right) \doteq P\left(Z>\frac{350-255}{72}\right) \doteq P(Z>1.32) \doteq 0.0934
$$

where in both cases $Z \sim \mathcal{N}(0,1)$ and using a table of z-values.
2. (c) An approximate 95% confidence interval for the true mean lifetime of The Electric Company's light bulbs is given by

$$
\bar{X} \pm t_{0.025, n-1} \frac{S}{\sqrt{n}} \quad \text { or } \quad 255 \pm 2.262 \frac{72}{\sqrt{10}} \quad \text { or } \quad[204,307] .
$$

2. (d) Since the mean lifetime of Bright Idea Lighting light bulbs is 262 , and since 262 lies in the 95% confidence interval constructed in (c), we conclude that there is no significant difference in mean lifetimes for these two companies' light blubs.
3. Let μ_{1} denote the mean waiting time for Cheap-O-Lube customers last year, and let μ_{2} denote the mean waiting time for Cheap-O-Lube customers this year. We are interested in testing the hypotheses

$$
H_{0}: \mu_{1}-\mu_{2} \leq 0 \quad \text { vs. } \quad H_{1}: \mu_{1}-\mu_{2}>0 .
$$

Since the population variances are unknown, we use a two sample t-test. Thus, our test statistic is

$$
T=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{4.5-3.5}{\sqrt{\frac{1^{2}}{200}+\frac{1^{2}}{180}}} \doteq 9.73 .
$$

Since there are $\mathrm{df}=n_{1}+n_{2}-2=378$ degrees of freedom, we can approximate this t-test by a z-test. From a z-table, the critical value corresponding to $\alpha=0.05$ is 1.645 . Since $9.73>1.645$ we reject H_{0} and conclude that there is overwhelming evidence to suggest that Cheap-O-Lube customers are waiting less this year.

