1. If $Y \sim \operatorname{Uniform}(\theta, 2 \theta)$, then $f_{Y}(y \mid \theta)=\theta^{-1}, \theta \leq y \leq 2 \theta$. Let $U=Y / \theta$ so that if $1 \leq u \leq 2$, then

$$
P(U \leq u)=P(Y \leq \theta u)=\int_{\theta}^{\theta u} \frac{1}{\theta} d y=u-1
$$

and so $f_{U}(u)=1,1 \leq u \leq 2$. We must now find a and b such that $\int_{1}^{a} d u=\frac{\alpha}{2}$ and $\int_{b}^{2} d u=\frac{\alpha}{2}$. Solving gives $a=1+\frac{\alpha}{2}$ and $b=2-\frac{\alpha}{2}$, and so $1-\alpha=P(a \leq U \leq b)$ or, in other words,

$$
1-\alpha=P\left(1+\frac{\alpha}{2} \leq \frac{Y}{\theta} \leq 2-\frac{\alpha}{2}\right)=P\left(\frac{2+\alpha}{2} \leq \frac{Y}{\theta} \leq \frac{4-\alpha}{2}\right)=P\left(\frac{2 Y}{4-\alpha} \leq \theta \leq \frac{2 Y}{2+\alpha}\right) .
$$

The required confidence interval for θ with coverage probability $1-\alpha$ is therefore

$$
\left[\frac{2 Y}{4-\alpha}, \frac{2 Y}{2+\alpha}\right]
$$

2. (a) If we write $a(\theta)=3 \theta, b(y)=y^{2}, c(\theta)=\theta, d(y)=y^{3}, \alpha=0$, and $\beta=\infty$, then we see that $f_{Y}(y \mid \theta)$ does, in fact, belong to an exponential family.
3. (b) The likelihood function is given by

$$
L(\theta)=\prod_{i=1}^{n} f_{Y}\left(y_{i} \mid \theta\right)=3^{n} \theta^{n}\left(\prod_{i=1}^{n} y_{i}^{2}\right) \exp \left\{-\theta \sum_{i=1}^{n} y_{i}^{3}\right\} .
$$

2. (c) In order to maximize $L(\theta)$ we will try to maximize $\ell(\theta)$ instead. Therefore,

$$
\ell(\theta)=n \log 3+n \log \theta+2 \sum_{i=1}^{n} \log y_{i}-\theta \sum_{i=1}^{n} y_{i}^{3}
$$

and so

$$
\ell^{\prime}(\theta)=\frac{n}{\theta}-\sum_{i=1}^{n} y_{i}^{3} .
$$

Setting $\ell^{\prime}(\theta)=0$ implies

$$
\theta=\frac{n}{\sum_{i=1}^{n} y_{i}^{3}} .
$$

Since $\ell^{\prime \prime}(\theta)=-\frac{n}{\theta^{2}}<0$ we conclude from the second derivative test that

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{n}{\sum_{i=1}^{n} Y_{i}^{3}}
$$

2. (d) If we let $u=\sum_{i=1}^{n} y_{i}^{3}, g(u, \theta)=\theta^{n} \exp \{-\theta u\}$, and $h\left(y_{1}, \ldots, y_{n}\right)=3^{n} \prod_{i=1}^{n} y_{i}^{2}$, then $L(\theta)=$ $g(u, \theta) \cdot h\left(y_{1}, \ldots, y_{n}\right)$ so from the Factorization Theorem we conclude that

$$
U=\sum_{i=1}^{n} Y_{i}^{3}
$$

is sufficient for the estimation of θ.
2. (e) Let $T(U)=\frac{n}{U}$. Since T is a one-to-one function, and since any one-to-one function of a sufficient statistic is also sufficient, we conclude that

$$
T\left(\sum_{i=1}^{n} Y_{i}^{3}\right)=\frac{n}{\sum_{i=1}^{n} Y_{i}^{3}}=\hat{\theta}_{\mathrm{MLE}}
$$

is sufficient for the estimation of θ.
2. (f) Since $\log f_{Y}(y \mid \theta)=\log 3+\log \theta+2 \log y-\theta y^{3}$ so that

$$
\frac{\partial}{\partial \theta} \log f_{Y}(y \mid \theta)=\frac{1}{\theta}-y^{3} \quad \text { and } \quad \frac{\partial^{2}}{\partial \theta^{2}} \log f_{Y}(y \mid \theta)=-\frac{1}{\theta^{2}}
$$

we find

$$
I(\theta)=-E\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f_{Y}(Y \mid \theta)\right)=-E\left(-\frac{1}{\theta^{2}}\right)=\frac{1}{\theta^{2}}
$$

2. (g) Since an approximate $1-\alpha$ confidence interval for θ is given by

$$
\left[\hat{\theta}_{\mathrm{MLE}}-z_{\alpha / 2} \frac{1}{\sqrt{n I\left(\hat{\theta}_{\mathrm{MLE}}\right)}}, \hat{\theta}_{\mathrm{MLE}}+z_{\alpha / 2} \frac{1}{\sqrt{n I\left(\hat{\theta}_{\mathrm{MLE}}\right)}}\right]
$$

we conclude that

$$
\left[\frac{n}{\sum_{i=1}^{n} Y_{i}^{3}}-1.96 \frac{\sqrt{n}}{\sum_{i=1}^{n} Y_{i}^{3}}, \frac{n}{\sum_{i=1}^{n} Y_{i}^{3}}+1.96 \frac{\sqrt{n}}{\sum_{i=1}^{n} Y_{i}^{3}}\right]
$$

is the required 95% confidence interval.
3. In order to determine the method of moments estimator of θ we equate the first population moment and the first sample moment, $E(Y)=\bar{Y}$, and solve for θ. Since

$$
E(Y)=\int_{-\infty}^{\infty} y f_{Y}(y \mid \theta) d y=\int_{0}^{1} y \theta y^{\theta-1} d y=\theta \int_{0}^{1} y^{\theta} d y=\frac{\theta}{\theta+1}
$$

we conclude $\frac{\theta}{\theta+1}=\bar{Y}$ and so solving for θ gives $\hat{\theta}_{\mathrm{MOM}}=\frac{\bar{Y}}{1-\bar{Y}}$.
4. The significance level of this hypothesis test is
$\alpha=P_{H_{0}}\left(\right.$ reject $\left.H_{0}\right)=P_{\mu=0}(\bar{Y}>7.84 / \sqrt{n})=P\left(\frac{\bar{Y}-0}{4 / \sqrt{n}}>\frac{7.84 / \sqrt{n}-0}{4 / \sqrt{n}}\right)=P(Z>1.96) \approx 0.025$ where $Z \sim \mathcal{N}(0,1)$ and the last step follows from Table 4.
5. (a) The statement of the Cramer-Rao inequality is as follows. Suppose that Y_{1}, \ldots, Y_{n} are i.i.d. with $Y_{i} \sim f_{Y}(y \mid \theta)$. Suppose further that f is a "smooth" function (continuous and differentiable). Let $\hat{\theta}$ be an unbiased estimator of θ based on Y_{1}, \ldots, Y_{n}. Then $\operatorname{Var}(\hat{\theta}) \geq \frac{1}{n I(\theta)}$.
5. (b) Suppose that the variance of an unbiased estimator $\hat{\theta}$ of θ is $\frac{1}{n I(\theta)}$ and that the other assumptions of the statement in (a) have been met. Since the lower bound of the Cramer-Rao inequality has been attained, we know that no other unbiased estimator can have smaller variance than $\hat{\theta}$. Hence, $\hat{\theta}$ must be the MVUE of θ.

