
Statistics 252 Winter 2007 Midterm #1 – Solutions

1. (a) Since B(θ̂) = E(θ̂) − θ, we must first compute E(θ̂). To determine E(θ̂), we need to find
the density function of θ̂, which requires us first to find the distribution function of θ̂. Since
Y1, . . . , Yn are i.i.d., we find

P (θ̂ > x) = P (min{Y1, . . . , Yn} > x) = P (Y1 > x, . . . , Yn > x) = [P (Y1 > x)]n.

We know the density of Y1, and so we compute

P (Y1 > x) =
∫ ∞

x
fY (y) dy =

∫ ∞

x
2θ2y−3 dy = θ2x−2.

Therefore, we find
P (θ̂ > x) = [P (Y1 > x)]n = θ2nx−2n for x ≥ θ

and so the distribution function for θ̂ is

Fθ̂(x) = P (θ̂ ≤ x) = 1− P (θ̂ > x) = 1− θ2nx−2n

for x ≥ θ. Finally, we differentiate to conclude that the density function for θ̂ is

fθ̂(x) = F ′
θ̂
(x) = 2nθ2nx−2n−1 for x ≥ θ.

Now we can determine E(θ̂) via

E(θ̂) =
∫ ∞

−∞
x · fθ̂(x) dx = 2nθ2n

∫ ∞

θ
x−2n dx = 2nθ2n · θ−2n+1

2n− 1
=

2n

2n− 1
θ. (∗)

Hence, the bias of θ̂ is given by

B(θ̂) = E(θ̂)− θ =
2n

2n− 1
θ − θ =

θ

2n− 1
.

(b) From (∗), we conclude that

c =
2n− 1

2n
.

(c) As for the mean-square error, we have from a result in class that MSE(θ̂1) = Var(θ̂1)+[B(θ̂1)]2.
Since θ̂1 is unbiased, MSE(θ̂1) = Var(θ̂1). Since

Var(θ̂1) = Var
(

2n− 1
2n

θ̂

)
=
(

2n− 1
2n

)2

Var(θ̂)

we must compute Var(θ̂). Therefore,

E(θ̂2) =
∫ ∞

−∞
x2 · fθ̂(x) dx = 2nθ2n

∫ ∞

θ
x−2n+1 dx = 2nθ2n · θ−2n+2

2n− 2
=

2n

2n− 2
θ2

and so

Var(θ̂) = E(θ̂2)− [E(θ̂)]2 =
2n

2n− 2
θ2 − (2n)2

(2n− 1)2
θ2.

We then conclude that

MSE(θ̂1) =
(

2n− 1
2n

)2 [ 2n

2n− 2
− (2n)2

(2n− 1)2

]
θ2 =

θ2

4n(n− 1)
.



2. If X ∼Uniform(0, θ), then

fX(x) =
1
θ

for 0 ≤ x ≤ θ

and so
FX(x) =

x

θ
for 0 ≤ x ≤ θ.

Since X1, X2, X3, X4 are i.i.d. Uniform(0, θ), we conclude

P (Y ≤ y) = P (max{Y1, . . . , Yn} ≤ y) = P (X1 ≤ y, . . . ,X4 ≤ y) = [P (X1 ≤ y)]4 =
y4

θ4
.

Thus, the density of Y is

fY (y) =
4y3

θ4
for 0 ≤ y ≤ θ.

3. (a) The moment generating function of X1 is

mX1(t) := E
(
etX1

)
= E (exp {t(Y1 + · · ·+ Yn)}) = E (exp {tY1}) · · ·E (exp {tY })

since the Yi are i.i.d. We know that

mY1(t) = E (exp {tY1}) =
1

1− θt

since Y1 ∼ Exp(θ), and so we conclude that

mX1(t) =
[

1
1− θt

]n

which is the moment generating function of a Gamma(n, θ) random variable.

(b) Since Y1, . . . , Yn are i.i.d. Exp(θ) random variables, we find

P (X2 > x) = P (min{Y1, . . . , Yn} > x) = P (Y1 > x, . . . , Yn > x) = [P (Y1 > x)]n =
[
e−x/θ

]n
and so

P (X2 ≤ x) = 1− e−nx/θ

which we recognize as the distribution function of an Exp
(

θ
n

)
random variable.

(c) We find

E(θ̂1) =
1
n

E(X1) =
1
n
· nθ = θ

where we have used the fact that the mean of a Gamma(n, θ) random variable is nθ.

(d) We find

E(θ̂2) = nE(X2) = n · θ

n
= θ

where we have used the fact that the mean of an Exp(θ/n) random variable is θ/n.



(e) We find

Var(θ̂1) =
1
n2

Var(X1) =
1
n2

· nθ2 =
θ2

n

where we have used the fact that the variance of a Gamma(n, θ) random variable is nθ2. We
also find

Var(θ̂2) = n2 Var(X2) = n2 · θ2

n2
= θ2

where we have used the fact that the variance of an Exp(θ/n) random variable is θ2/n2. We
prefer the unbiased estimator with the smallest variance which, in this case, is θ̂1.

4. (a) As shown in class,

X ∼ N
(

µ1,
σ2

1

n

)
and Y ∼ N

(
µ2,

σ2
2

m

)
.

We also showed that the sum of independent normals is again normal, and so

X − Y ∼ N
(

µ1 − µ2,
σ2

1

n
+

σ2
2

m

)
.

(b) If

Z =
X − Y − (µ1 − µ2)√

σ2
1

n + σ2
2

m

then Z ∼ N (0, 1), and so

1− α = P (−zα/2 ≤ Z ≤ zα/2)

= P

(
X − Y − zα/2

√
σ2

1

n
+

σ2
2

m
≤ µ1 − µ2 ≤ X − Y + zα/2

√
σ2

1

n
+

σ2
2

m

)
Therefore, the required (1− α) confidence interval for (µ1 − µ2) is[

X − Y − zα/2

√
σ2

1

n
+

σ2
2

m
, X − Y + zα/2

√
σ2

1

n
+

σ2
2

m

]
.

5. (a) Suppose that θ̂ is an estimator. It is important to determine the sampling distribution of θ̂ in
order to analyze it. In particular, we are interested in the bias and the mean-square error of our
estimators, and in order to compute these numbers it is necessary to know the distribution
of θ̂. (Given the distribution, we can determine the density, and hence compute various
moments.) It is also important to know the sampling distribution in order to construct exact
confidence intervals. For instance, if a transformation of the estimator yields a distribution
which is parameter-free, then this can be used in the construction of confidence intervals via
the pivotal method.

(b) Given random variables Y1, . . . , Yn, a statistic is simply a single-valued function g(Y1, . . . , Yn)
of those random variables. The dual nature of the term arises as follows. Consider an experi-
ment. Before the experiment is performed, the outcome is unknown, and after the experiment
is performed, the outcome is, of course, known. Therefore, g(Y1, . . . , Yn) is unknown in ad-
vance and is a priori a random variable. Once the experiment is performed and the data
y1, . . . , yn are known, g(y1, . . . , yn) is simply a number summarizing that data.


