Statistics 252 "Practice Midterm" – Winter 2007

1. (8 points) Consider a random variable Y with density function

$$f_Y(y) = \frac{2y}{\theta^2} \exp\left\{-\frac{y^2}{\theta^2}\right\}, \quad y > 0$$

where $\theta > 0$ is a parameter. Use the pivotal method to verify that if $0 < \alpha < 1$, then

$$\left[\frac{Y}{\sqrt{-\log(\alpha/2)}}, \frac{Y}{\sqrt{-\log(1-\alpha/2)}}\right]$$

is a confidence interval for θ with coverage probability $1 - \alpha$.

2. (15 points) Suppose that Y_1, \ldots, Y_n are independent and identically distributed random variables with each Y_i having density function

$$f(y|\theta) = \frac{\theta^2}{y^3} \exp(-\theta/y), \quad y > 0$$

for some parameter $\theta > 0$.

- (a) Compute the likelihood function $L(\theta)$ for this random sample.
- (b) Show that the maximum likelihood estimator of θ is $\hat{\theta}_{\text{MLE}} = \frac{2n}{\sum_{i=1}^{n} \frac{1}{Y_i}}$.
- (c) Show that $\sum_{i=1}^{n} \frac{1}{Y_i}$ is a sufficient statistic for the estimation of θ .
- (d) Explain why $\hat{\theta}_{MLE}$ must also be a sufficient statistic for the estimation of θ .
- (e) Find the Fisher information $I(\theta)$ in a single observation from this density.
- (f) Construct an approximate 95% confidence interval for θ based on $\hat{\theta}_{MLE}$.

3. (4 points) Assume that the outcome of an experiment is a single random variable Y. A 90% confidence interval for a parameter θ has the form (Y - 2, Y + 3). From this, determine a rejection rule for testing $H_0: \theta = 4$ against $H_A: \theta \neq 4$ at significance level 0.10. (*Hint: Use the confidence interval-hypothesis test duality.*)

4. (8 points) Let Y be a Uniform $(0, \theta)$ random variable. Consider testing $H_0: \theta = 1$ against $H_A: \theta > 1$ by rejecting H_0 when Y > c.

- (a) Find c so that this test has significance level 0.05.
- (b) What is the power of the test in (a) (as a function of θ)?