Statistics 252 Midterm \#1 - February 5, 2007

This exam has 5 problems and is worth 40 points. Instructor: Michael Kozdron You must answer all of the questions in the exam booklet provided.

You have 50 minutes to complete this exam. Please read all instructions carefully, and check your answers. Show all work neatly and in order, and clearly indicate your final answers. Answers must be justified whenever possible in order to earn full credit. Unless otherwise specified, no credit will be given for unsupported answers, even if your final answer is correct. Points will be deducted for incoherent, incorrect, and/or irrelevant statements.
This exam is closed-book, except that one $8 \frac{1}{2} \times 11$ double-sided page of handwritten notes is permitted. No other aids are allowed.

The following facts might prove useful.

- If the random variable Y has the $\operatorname{Gamma}(\alpha, \beta)$ distribution, then

$$
f_{Y}(y)=\frac{\beta^{-\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-y / \beta}, \quad y>0
$$

Furthermore,

$$
m_{Y}(t)=\left(\frac{1}{1-\beta t}\right)^{\alpha}, \quad E(Y)=\alpha \beta, \quad \operatorname{Var}(Y)=\alpha \beta^{2}
$$

- If the random variable Y has the $\operatorname{Exp}(\lambda)$ distribution, then

$$
f_{Y}(y)=\frac{1}{\lambda} e^{-y / \lambda}, \quad y>0
$$

Furthermore,

$$
m_{Y}(t)=\frac{1}{1-\lambda t}, \quad E(Y)=\lambda, \quad \operatorname{Var}(Y)=\lambda^{2}
$$

- If the random variable Y has the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, then

$$
f_{Y}(y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\}, \quad-\infty<y<\infty
$$

Furthermore,

$$
m_{Y}(t)=\exp \left\{\mu t+\frac{t^{2} \sigma^{2}}{2}\right\}, \quad E(Y)=\mu, \quad \operatorname{Var}(Y)=\sigma^{2}
$$

1. (10 points) Suppose that Y_{1}, \ldots, Y_{n} is a random sample where the density of each random variable Y_{i} is

$$
f_{Y}(y)=2 \theta^{2} y^{-3}, \quad y \geq \theta
$$

for some parameter $\theta>1$. Let $\hat{\theta}:=\min \left\{Y_{1}, \ldots, Y_{n}\right\}$.
(a) Calculate $B(\hat{\theta})$, the bias of $\hat{\theta}$.
(b) Determine the value of the constant c for which $\hat{\theta}_{1}:=c \hat{\theta}$ is unbiased.
(c) Calculate $\operatorname{MSE}\left(\hat{\theta}_{1}\right)$, the mean-square error of $\hat{\theta}_{1}$.
2. (6 points) An electrical circuit consists of four batteries connected in parallel to a lightbulb. We model the battery lifetimes $X_{1}, X_{2}, X_{3}, X_{4}$ as independent and identically distributed $\operatorname{Uniform}(0, \theta)$ random variables (where $\theta>0$ is a parameter). Our experiment to measure the lifetime of the lightbulb Y is stopped when the last battery fails. Determine the density function for the random variable $Y:=\max \left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$.
3. (10 points) Suppose that Y_{1}, \ldots, Y_{n} are independent and identically distributed $\operatorname{Exp}(\theta)$ random variables.
(a) Let $X_{1}:=Y_{1}+\cdots+Y_{n}$. Use moment generating functions to show that X_{1} has a Gamma (n, θ) distribution.
(b) Let $X_{2}:=\min \left\{Y_{1}, \ldots, Y_{n}\right\}$. Show that X_{2} has an $\operatorname{Exp}\left(\frac{\theta}{n}\right)$ distribution.
(c) Verify that $\hat{\theta}_{1}:=\frac{X_{1}}{n}$ is an unbiased estimator for θ.
(d) Verify that $\hat{\theta}_{2}:=n X_{2}$ is an unbiased estimator for θ.
(e) Which estimator, $\hat{\theta}_{1}$ or $\hat{\theta}_{2}$, is preferred for the estimation of θ ?
4. (8 points) Let X_{1}, \ldots, X_{n} be i.i.d. $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and let Y_{1}, \ldots, Y_{m} be i.i.d. $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$. Suppose further that X_{i} and Y_{j} are independent, $i=1, \ldots, n ; j=1, \ldots, m$.
(a) Determine the sampling distribution of $\bar{X}-\bar{Y}$.
(b) Suppose that σ_{1} and σ_{2} are known, but that μ_{1} and μ_{2} are unknown. Use your result of (a) to construct a $1-\alpha$ confidence interval for $\mu_{1}-\mu_{2}$. (Of course, $0<\alpha<1$.)
5. (6 points)
(a) Suppose that you have been asked to analyze a data set, and you are planning to use a particular estimator to estimate a parameter. In the context of Stat 252, explain why it is important to determine the sampling distribution of this estimator.
(b) In the context of Stat 252, explain the multiple meanings of the term statistic.

