Statistics 252 Midterm \#2 - March 3, 2006

1. (10 points)

(a) Suppose that a random variable Y has density function $f_{Y}(y \mid \theta)=(\theta+1) y^{\theta}, 0 \leq y \leq 1$. Determine the Fisher information $I(\theta)$ for this random variable.
(b) Let Y_{1}, \ldots, Y_{n} be independent and identically distributed random variables each with the density $f_{Y}(y \mid \theta)$ given in (a). Determine $\hat{\theta}_{\mathrm{MOM}}$, the method of moments estimator of θ.
2. (7 points) Consider a random variable Y with density function $f_{Y}(y \mid \theta)=2 \theta^{-2} y, 0 \leq y \leq \theta$, for some parameter $\theta>0$. Use the pivotal method to verify that if $0<\alpha<1$, then

$$
\left(\frac{Y}{\sqrt{1-\alpha / 2}}, \frac{Y}{\sqrt{\alpha / 2}}\right)
$$

is a confidence interval for θ with coverage probability $1-\alpha$.
3. (10 points) Recall that a discrete random variable Y is said to be Poisson with parameter $\theta>0$ if the density (also called probability mass function) of Y is

$$
f_{Y}(y \mid \theta)=\frac{\theta^{y} e^{-y}}{y!}, \quad y=0,1,2, \ldots
$$

Recall further that if Y is $\operatorname{Poisson}(\theta)$, then $E(Y)=\theta$ and $\operatorname{Var}(Y)=\theta$.
(a) It turns out that the same formula for the Fisher information can be used for discrete random variables. Show that if Y is a Poisson random variable with parameter θ, then $I(\theta)=\frac{1}{\theta}$.

For parts (b), (c), (d), and (e) below, suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and identically distributed $\operatorname{Poisson}(\theta)$ random variables.
(b) Show that $\hat{\theta}_{\mathrm{MOM}}$, the method of moments estimator of θ, is $\hat{\theta}_{\mathrm{MOM}}=\bar{Y}=\frac{Y_{1}+\cdots+Y_{n}}{n}$.
(c) Show that $\hat{\theta}_{\text {MOM }}$ is an unbiased estimator of θ.
(d) Calculate $\operatorname{Var}\left(\hat{\theta}_{\text {MOM }}\right)$.
(e) Explain why $\hat{\theta}_{\text {MOM }}$ must be the minimum variance unbiased estimator (MVUE) of θ.
4. (8 points)
(a) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent and identically distributed random variables each with mean p and variance $p(1-p)$. Here p is an unknown parameter between 0 and 1 . If

$$
\hat{p}=\frac{Y_{1}+\cdots+Y_{n}}{n}
$$

then it is known that \hat{p} is an unbiased estimator of p. Show that the maximum value of $\operatorname{Var}(\hat{p})$, the variance of \hat{p}, occurs when $p=1 / 2$.
(b) Suppose that $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are both unbiased estimators of θ. Explain how $\operatorname{Eff}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$, the relative efficiency of $\hat{\theta}_{1}$ to $\hat{\theta}_{2}$, can be used to decide which of these two estimator is preferable.

