
Stat 252 (Winter 2007)
Confidence Intervals for a Population Proportion

Theorem (Central Limit Theorem). Suppose that Y1, Y2, . . . is a collection of independent, and identi-
cally distributed L2 random variables with E(Yi) = µ and Var(Yi) = σ2 for each i. For each n, let Zn be the
random variable defined by

Zn :=
Y n − µ

σ/
√

n
where Y n =

1
n

n∑
i=1

Yi.

Then, for z ∈ R, it follows that as n → ∞, P (Zn ≤ z) → Φ(z) :=
1√
2π

∫ z

−∞
e−

t2
2 dt. That is, Zn → Z in

distribution as n →∞ where Z ∼ N (0, 1).

Since the limiting distribution of the random variable Zn is normal no matter what the underlying distribution
is, we can argue that for a large sample size n, a normal approximation can be used. In fact, if Y1, . . . , Yn

(with n large) are i.i.d. with a common (non-normal) distribution depending on a parameter θ, and θ̂ is an
unbiased estimator of θ, then

θ̂ − θ

σθ̂

approx∼ N (0, 1)

where σθ̂ denotes the standard error of the estimator θ̂. We will use this approximation in much more
generality later in the course when we discuss maximum likelihood estimation. For now, we will use this
only for estimating a population proportion.

Estimating a Population Proportion

Suppose that we are interested in estimating a population proportion p. We collect a random sample from
the population and let

Yi =

{
1, if ith individual has the characteristic of interest,
0, if not.

That is, Y1, . . . , Yn are i.i.d. Bernoulli(p) random variables. Since

E(Yi) = 1 · P (Yi = 1) + 0 · P (Yi = 0) = p,

we find that Y = 1
n

∑n
i=1 Yi is an unbiased estimator of p. Furthermore,

E(Y 2
i ) = 12 · P (Yi = 1) + 02 · P (Yi = 0) = p,

so that Var(Yi) = p− p2 = p(1− p). Therefore,

Var(Y ) =
1
n2
· np(1− p) =

p(1− p)
n

.

In fact, much more can be said about the distribution of Y . Using moment generating functions you showed
in Stat 251 that if Y1, . . . , Yn are i.i.d. Bernoulli(p) random variables, then

nY =
n∑

i=1

Yi ∼ Binomial(n, p).

Remark 1. It is traditional when estimating a population proportion to use p̂ as the notation for the
estimator. That is, if Y1, . . . , Yn are i.i.d. Bernoulli(p) random variables, then

p̂ :=
1
n

n∑
i=1

Yi

satisfies E(p̂) = p and σp̂ :=
√

Var(p̂) =
√

p(1−p)
n . Furthermore, np̂ ∼ Binomial(n, p). From this point, we

will use the p̂ notation when estimating population proportions.
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Since the exact sampling distribution of p̂ is known, it is possible to use the pivotal method from Lecture
#12 to construct exact confidence intervals. However, it is extremely tedious to manipulate the summations
of the binomial distribution. In fact, it is impossible even for extremely fast computers to calculate n! for
large n such as n = 1 400 000. (This is the actual sample sizes that are being considered by geneticist
analyzing the human genome.)

Therefore, in order to construct confidence intervals for p we will use the approximation based on the Central
Limit Theorem. That is,

p̂− p√
p(1−p)

n

approx∼ N (0, 1).

The problem, of course, is that Var(p̂) = p(1−p)
n depends on the parameter of interest p. When we encountered

this in Lecture #10 our solution was to replace the variance with the estimated variance. Therefore, we
consider

p̂− p√
p̂(1−p̂)

n

approx∼ t(n− 1).

We are now able to find an approximate 1− α confidence interval for p based on p̂ as follows:

1− α ≈ P

−tα/2,n−1 ≤
p̂− p√
p̂(1−p̂)

n

≤ tα/2,n−1

 = P

(
p̂− tα/2,n−1

√
p̂(1− p̂)

n
≤ p ≤ p̂ + tα/2,n−1

√
p̂(1− p̂)

n

)
.

Thus, the required approximate 1− α confidence interval is[
p̂− tα/2,n−1

√
p̂(1− p̂)

n
, p̂ + tα/2,n−1

√
p̂(1− p̂)

n

]
. (∗)

Remark 2. In first undergraduate courses (like Stat 151) it is more common to see the formula[
p̂− zα/2

√
p̂(1− p̂)

n
, p̂ + zα/2

√
p̂(1− p̂)

n

]
.

where zα/2 is the critical value corresponding to the normal distribution. (That is, if Z ∼ N (0, 1), then
P (−zα/2 ≤ Z ≤ zα/2) = 1 − α.) However, there is no contradiction here with (∗). In order for the normal
approximation to be valid, the sample size must be sufficiently large. For large values of n, the t(n − 1)
distribution and the normal distribution are approximately equal, and the critical values tα/2,n−1 and zα/2

are equal to three or four decimal places. This can clearly be seen from Tables 5 and 6.

Remark 3. The conventional wisdom has historically been that this normal approximation is valid provided
that n ≥ 30. There has never been, however, documented research to justify this arbitrary value of 30. The
original reason was simply that in the 1960s it was computationally impractical to compute values of the
t(n − 1) statistic for n ≥ 30. Therefore, accuracy to only three decimal places was considered acceptable.
The advent of modern processors has rendered this choice of 30 obsolete since more complete t-tables are
now available. For instance, a listing of t-values for n = 1, . . . , 100 is available at

http://davidmlane.com/hyperstat/t-table.html

and a java calculator able to compute t-values accurate to four decimal places for arbitrarily large degrees
of freedom may be found at

http://statpages.org/pdfs.html.

Furthermore, recently published research has demonstrated just how poor the z-approximation actually is.
For these reasons, we will use (∗) as the approximate 1− α confidence interval for p in our calculations for
this course.
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