Stat 252 (Winter 2007)
Confidence Intervals for a Population Proportion
Theorem (Central Limit Theorem). Suppose that $Y_{1}, Y_{2}, \ldots$ is a collection of independent, and identically distributed $L^{2}$ random variables with $\mathbb{E}\left(Y_{i}\right)=\mu$ and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$ for each $i$. For each $n$, let $Z_{n}$ be the random variable defined by

$$
Z_{n}:=\frac{\bar{Y}_{n}-\mu}{\sigma / \sqrt{n}} \quad \text { where } \quad \bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

Then, for $z \in \mathbb{R}$, it follows that as $n \rightarrow \infty, P\left(Z_{n} \leq z\right) \rightarrow \Phi(z):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{t^{2}}{2}} d t$. That is, $Z_{n} \rightarrow Z$ in distribution as $n \rightarrow \infty$ where $Z \sim \mathcal{N}(0,1)$.

Since the limiting distribution of the random variable $Z_{n}$ is normal no matter what the underlying distribution $i s$, we can argue that for a large sample size $n$, a normal approximation can be used. In fact, if $Y_{1}, \ldots, Y_{n}$ (with $n$ large) are i.i.d. with a common (non-normal) distribution depending on a parameter $\theta$, and $\hat{\theta}$ is an unbiased estimator of $\theta$, then

$$
\frac{\hat{\theta}-\theta}{\sigma_{\hat{\theta}}} \stackrel{\text { approx }}{\sim} \mathcal{N}(0,1)
$$

where $\sigma_{\hat{\theta}}$ denotes the standard error of the estimator $\hat{\theta}$. We will use this approximation in much more generality later in the course when we discuss maximum likelihood estimation. For now, we will use this only for estimating a population proportion.

## Estimating a Population Proportion

Suppose that we are interested in estimating a population proportion $p$. We collect a random sample from the population and let

$$
Y_{i}= \begin{cases}1, & \text { if } i \text { th individual has the characteristic of interest } \\ 0, & \text { if not. }\end{cases}
$$

That is, $Y_{1}, \ldots, Y_{n}$ are i.i.d. Bernoulli $(p)$ random variables. Since

$$
\mathbb{E}\left(Y_{i}\right)=1 \cdot P\left(Y_{i}=1\right)+0 \cdot P\left(Y_{i}=0\right)=p
$$

we find that $\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$ is an unbiased estimator of $p$. Furthermore,

$$
\mathbb{E}\left(Y_{i}^{2}\right)=1^{2} \cdot P\left(Y_{i}=1\right)+0^{2} \cdot P\left(Y_{i}=0\right)=p
$$

so that $\operatorname{Var}\left(Y_{i}\right)=p-p^{2}=p(1-p)$. Therefore,

$$
\operatorname{Var}(\bar{Y})=\frac{1}{n^{2}} \cdot n p(1-p)=\frac{p(1-p)}{n}
$$

In fact, much more can be said about the distribution of $\bar{Y}$. Using moment generating functions you showed in Stat 251 that if $Y_{1}, \ldots, Y_{n}$ are i.i.d. Bernoulli $(p)$ random variables, then

$$
n \bar{Y}=\sum_{i=1}^{n} Y_{i} \sim \operatorname{Binomial}(n, p)
$$

Remark 1. It is traditional when estimating a population proportion to use $\hat{p}$ as the notation for the estimator. That is, if $Y_{1}, \ldots, Y_{n}$ are i.i.d. $\operatorname{Bernoulli}(p)$ random variables, then

$$
\hat{p}:=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

satisfies $\mathbb{E}(\hat{p})=p$ and $\sigma_{\hat{p}}:=\sqrt{\operatorname{Var}(\hat{p})}=\sqrt{\frac{p(1-p)}{n}}$. Furthermore, $n \hat{p} \sim \operatorname{Binomial}(n, p)$. From this point, we will use the $\hat{p}$ notation when estimating population proportions.

Since the exact sampling distribution of $\hat{p}$ is known, it is possible to use the pivotal method from Lecture \#12 to construct exact confidence intervals. However, it is extremely tedious to manipulate the summations of the binomial distribution. In fact, it is impossible even for extremely fast computers to calculate $n$ ! for large $n$ such as $n=1400000$. (This is the actual sample sizes that are being considered by geneticist analyzing the human genome.)
Therefore, in order to construct confidence intervals for $p$ we will use the approximation based on the Central Limit Theorem. That is,

$$
\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{\text { approx }}{\sim} \mathcal{N}(0,1)
$$

The problem, of course, is that $\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n}$ depends on the parameter of interest $p$. When we encountered this in Lecture $\# 10$ our solution was to replace the variance with the estimated variance. Therefore, we consider

$$
\frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \stackrel{\text { approx }}{\sim} t(n-1)
$$

We are now able to find an approximate $1-\alpha$ confidence interval for $p$ based on $\hat{p}$ as follows:
$1-\alpha \approx P\left(-t_{\alpha / 2, n-1} \leq \frac{\hat{p}-p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \leq t_{\alpha / 2, n-1}\right)=P\left(\hat{p}-t_{\alpha / 2, n-1} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq p \leq \hat{p}+t_{\alpha / 2, n-1} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$.
Thus, the required approximate $1-\alpha$ confidence interval is

$$
\begin{equation*}
\left[\hat{p}-t_{\alpha / 2, n-1} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+t_{\alpha / 2, n-1} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right] \tag{*}
\end{equation*}
$$

Remark 2. In first undergraduate courses (like Stat 151) it is more common to see the formula

$$
\left[\hat{p}-z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]
$$

where $z_{\alpha / 2}$ is the critical value corresponding to the normal distribution. (That is, if $Z \sim \mathcal{N}(0,1)$, then $P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=1-\alpha$.) However, there is no contradiction here with (*). In order for the normal approximation to be valid, the sample size must be sufficiently large. For large values of $n$, the $t(n-1)$ distribution and the normal distribution are approximately equal, and the critical values $t_{\alpha / 2, n-1}$ and $z_{\alpha / 2}$ are equal to three or four decimal places. This can clearly be seen from Tables 5 and 6 .
Remark 3. The conventional wisdom has historically been that this normal approximation is valid provided that $n \geq 30$. There has never been, however, documented research to justify this arbitrary value of 30 . The original reason was simply that in the 1960s it was computationally impractical to compute values of the $t(n-1)$ statistic for $n \geq 30$. Therefore, accuracy to only three decimal places was considered acceptable. The advent of modern processors has rendered this choice of 30 obsolete since more complete $t$-tables are now available. For instance, a listing of $t$-values for $n=1, \ldots, 100$ is available at

```
http://davidmlane.com/hyperstat/t-table.html
```

and a java calculator able to compute $t$-values accurate to four decimal places for arbitrarily large degrees of freedom may be found at

> http://statpages.org/pdfs.html.

Furthermore, recently published research has demonstrated just how poor the $z$-approximation actually is. For these reasons, we will use $(*)$ as the approximate $1-\alpha$ confidence interval for $p$ in our calculations for this course.

