Stat 252 Winter 2007 Hypothesis Tests for Normal Populations

1. Suppose that Y_1, \ldots, Y_n are i.i.d. from the $\mathcal{N}(\mu, \sigma^2)$ distribution where σ^2 is known, but μ is unknown. Consider testing $H_0: \mu = \mu_0$ against $H_A: \mu > \mu_0$ by rejecting H_0 if Z > 1.65 where

$$Z = \frac{\overline{Y} - \mu_0}{\sigma / \sqrt{n}}$$

Last class we showed that this test has significance level 0.05.

- (a) Assume that $\mu_0 = 0$, $\sigma^2 = 25$, and n = 4. What is the power of the test when $\mu = 1$, when $\mu = 2$, and when $\mu = 3$?
- (b) Repeat part (a) assuming a larger sample size of n = 16. Do you have any comments about the comparison of power for the two sample sizes?

2. Suppose that Y_1, \ldots, Y_{10} are i.i.d. from the $\mathcal{N}(\mu, \sigma^2)$ distribution where both μ and σ^2 are unknown. As usual, let S^2 denote the sample variance. Consider testing $H_0: \sigma^2 = 1$ against $H_A: \sigma^2 > 1$ by rejecting H_0 when $S^2 > c$.

- (a) Determine c so that this test has significance level 0.1.
- (b) What is the power of this test when $\sigma^2 = 2$ and when $\sigma^2 = 3$?

NOTE: Table 6 in the back of the textbook is not complete enough for these calculations, so I have provided some quantiles of the χ_9^2 distribution below. You can give your answers to the accuracy permitted by this information.