Stat 252 Winter 2007 Generalized Likelihood Ratio Test

1. Suppose that Y_1, \ldots, Y_n are independent and identically distributed random variables with each Y_i having density function

$$f(y|\theta) = \frac{\theta^2}{y^3} \exp\left(-\theta/y\right)$$

where y > 0 and $\theta > 0$. It is known that $\mathbb{E}(Y_i) = \theta$ and $\mathbb{E}\left(\frac{1}{Y_i}\right) = \frac{2}{\theta}$ for each i = 1, ..., n.

- (a) Determine $\hat{\theta}_{MOM}$, the method of moments estimator of θ .
- (b) Compute the likelihood function $L(\theta)$ for this random sample.
- (c) Show that the maximum likelihood estimator of θ is $\hat{\theta}_{MLE} = \frac{2n}{\sum_{i=1}^{n} \frac{1}{Y_i}}$.
- (d) Show that $\sum_{i=1}^{n} \frac{1}{Y_i}$ is a sufficient statistic for the estimation of θ .
- (e) Explain why $\hat{\theta}_{MLE}$ must also be a sufficient statistic for the estimation of θ .
- (f) Find the Fisher information $I(\theta)$ in a single observation from this density.
- (g) Using the standard approximation for the distribution of a maximum likelihood estimator based on the Fisher information, construct an approximate 90% confidence interval for θ .
- (h) Verify that the generalized likelihood ratio test for the test of the hypothesis $H_0: \theta = \theta_0$ against $H_A: \theta \neq \theta_0$ has rejection region of the form

$$\left\{ \left(\sum_{i=1}^{n} \frac{1}{Y_i}\right)^{2n} \exp\left(-\theta_0 \sum_{i=1}^{n} \frac{1}{Y_i}\right) \le C \right\}$$

for some constant C.

To answer (i) and (j) below, suppose that an observation of size n = 8 produces

$$\sum_{i=1}^{8} \frac{1}{Y_i} = 10$$

- (i) Based on your confidence interval constructed in (g) and on the above data, can you reject the hypothesis $H_0: \theta = 1$ in favour of $H_A: \theta \neq 1$ at the significance level $\alpha = 0.10$?
- (j) Based on your generalized likelihood ratio test constructed in (h) and on the above data, can you reject the hypothesis $H_0: \theta = 1$ in favour of $H_A: \theta \neq 1$ at the significance level $\alpha = 0.10$?