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1. (a) To find the method of moments estimator of θ we must solve the equation E(Y ) = Y for
θ. Since E(Y ) = θ, we conclude

θ̂MOM = Y .

1. (c) The likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) = θ2n

(
n∏

i=1

yi

)−3

exp

{
−θ

n∑
i=1

1
yi

}

so that the log-likelihood function is

`(θ) = 2n log θ − 3
n∑

i=1

log yi − θ
n∑

i=1

1
yi

.

Since `′(θ) = 0 implies

0 =
2n

θ
−

n∑
i=1

1
yi

so that
θ =

2n∑n
i=1

1
yi

,

and since
`′′(θ) = −2n

θ2
< 0,

we conclude from the second derivative test that

θ̂MLE =
2n

n∑
i=1

1
Yi

.

1. (d) Since

L(θ) = θ2n

(
n∏

i=1

yi

)−3

exp

{
−θ

n∑
i=1

1
yi

}
we see that if we let u =

∑n
i=1

1
yi

, g(u, θ) = θ2ne−θu, and h(y1, . . . , yn) = (
∏n

i=1 yi)
−3, then

L(θ) = g(u, θ) · h(y1, . . . , yn)

so from the Factorization Theorem we conclude that

U =
n∑

i=1

1
Yi

is sufficient for the estimation of θ.



1. (e) If T (U) = 2n
U , then since T is a one-to-one function and since any one-to-one function of

a sufficient statistic is also sufficient, we conclude that

T

(
n∑

i=1

1
Yi

)
=

2n
n∑

i=1

1
Yi

= θ̂MLE

is also sufficient.

1. (f) Since

log fY (y|θ) = 2 log θ − 3 log y − θ

y
,

we find
∂

∂θ
log fY (y|θ) =

2
θ
− 1

y
and

∂2

∂θ2
log fY (y|θ) = − 2

θ2

Thus,

I(θ) = −E
(

∂2

∂θ2
log fY (Y |θ)

)
=

2
θ2

.

1. (g) An approximate 90% confidence interval for θ is given by θ̂MLE − 1.645
1√

n I(θ̂MLE)
, θ̂MLE + 1.645

1√
n I(θ̂MLE)


or [

2n∑n
i=1

1
Yi

− 1.645
√

2n∑n
i=1

1
Yi

,
2n∑n
i=1

1
Yi

+ 1.645
√

2n∑n
i=1

1
Yi

]
.

1. (i) If n = 8 observations produce
∑8

i=1
1
yi

= 10, then based on this data, an approximate
90% confidence interval for θ is

[1.6− 0.66, 1.6 + 0.66] or [0.94, 2.26].

Since θ0 = 1 falls in this interval, we conclude from the confidence interval–hypothesis test du-
ality that we do not reject H0 : θ = 1 in favour of HA : θ 6= 1 at significance level α = 0.10.

2. (a) Since

log fY (y|θ) = log y − 2 log θ − y2

2θ2
,

we find
∂2

∂θ2
log fY (y|θ) =

2
θ2
− 3y2

θ4
.

Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
=

3E(Y 2)
θ4

− 2
θ2

=
4
θ2

.

2. (b) To find θ̂MOM we solve the equation E(Y ) = Y for θ. This implies

θ̂MOM =

√
2
π

Y .



2. (c)

Var(θ̂MOM) =
2
π

Var(Y ) =
2

nπ
Var(Y1) =

2
nπ

(
E(Y 2

1 )− [E(Y )]2
)

=
2

nπ

(
2− π

2

)
θ2

=
(

4− π

nπ

)
θ2

2. (d) The likelihood function is

L(θ) =
n∏

i=1

fY (yi|θ) =

(
n∏

i=1

yi

)
θ−2n exp

{
− 1

2θ2

n∑
i=1

y2
i

}
so that the log-likelihood function is

`(θ) =
n∑

i=1

log yi − 2n log θ − 1
2θ2

n∑
i=1

y2
i .

Hence `′(θ) = 0 implies

0 = −2n

θ
+

1
θ3

n∑
i=1

y2
i

so that

θ̂MLE =

√√√√ 1
2n

n∑
i=1

Y 2
i .

2. (e) An approximate 95% confidence interval for θ is given by θ̂MLE − 1.96
1√

n I(θ̂MLE)
, θ̂MLE + 1.96

1√
n I(θ̂MLE)

 .

Since n = 100 and
∑100

i=1 y2
i = 80000, we conclude that

θ̂MLE =

√
80000
200

=
√

400 = 20

and
I(θ̂MLE) =

4

θ̂2
MLE

=
4

400
=

1
100

.

Hence, an approximate 95% confidence interval for θ is

[20− 1.96, 20 + 1.96] or [18.04, 21.96].

3. (a) Since

E(θ̂1) =
1
4

E(X) +
1
2

E(Y ) =
2θ

4
+

θ

2
= θ

and
E(θ̂2) = E(X)− E(Y ) = 2θ − θ = θ

we conclude that B(θ̂1) = B(θ̂2) = 0. Thus,

MSE(θ̂1) = Var(θ̂1) =
1
16

Var(X) +
1
4

Var(Y ) =
3
4



and
MSE(θ̂2) = Var(θ̂2) = Var(X) + Var(Y ) = 6.

3. (b) We find

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
= 8.

Since both θ̂1 and θ̂2 are unbiased, the one with the smaller variance is preferrable, namely θ̂1.

3. (c) Since

E(θ̂c) =
c

2
E(X) + (1− c)E(Y ) =

2cθ

2
+ (1− c)θ = θ

we see θ̂c is unbiased. Since

Var(θ̂c) =
c2

4
Var(X) + (1− c)2 Var(Y ) = c2 + 2(1− c)2 = 3c2 − 4c + 2

the value that minimizes Var(θ̂c) is the same value that minimizes the polynomial g(c) =
3c2 − 4c + 2. Since g′(c) = 0 implies c = 2/3, and since g′′(2/3) > 0, the minimal value of
c is 2/3.

4. (a) We find that
E(Y ) = E(Y1) = 252 θ.

Thus, if

θ̂A =
Y

252
=

1
252n

n∑
i=1

Yi

then θ̂A is an unbiased estimator of θ.

4. (b) Since
log fY (y|θ) = −252 log θ − log(251!) + 251 log y − y

θ
,

we find
∂2

∂θ2
log fY (y|θ) =

252
θ2

− 2y

θ3
.

Thus,

I(θ) = −E
(

∂2

∂θ2
log fY (Y |θ)

)
= −252

θ2
+

2E(Y )
θ3

=
252
θ2

.

4. (c) The Cramer-Rao inequality tells us that any unbiased estimator θ̂ of θ must satisfy

Var(θ̂) ≥ 1
nI(θ)

=
θ2

252n
.

Since

Var(θ̂A) =
1

2522n
VarY1 =

1
2522

· (252 θ2) =
θ2

252n
,

we have found an unbiased estimator whose variance attains the lower bound of the Cramer-Rao
inequality. Hence, θ̂A must be the MVUE of θ.



5. To find the method of moments estimators for λ and θ, we must solve the system of equations

E(Y ) = Y and E(Y 2) =
1
n

n∑
i=1

Y 2
i

Thus, some trivial algebra gives

θ̂MOM = Y and λ̂MOM =

√√√√√√
2n

n∑
i=1

Y 2
i

.

6. (a) If Y ∼ Uniform(0, θ), then E(Y ) = θ/2 and Var(Y ) = θ2/12. Thus,

θ̂MOM = 2Y .

Since
E(θ̂MOM) = 2E(Y ) = 2E(Y1) = 2

θ

2
= θ

we conclude that θ̂MOM is an unbiased estimator of θ.

6. (b) In order to find E(θ̂MLE) we must find the density function of θ̂MLE. Now,

P (θ̂MLE ≤ t) =
[∫ t

0
θ−1 dy

]10

=
t10

θ10
, 0 ≤ t ≤ θ,

so that f(t) = 10 θ−10 t9, 0 ≤ t ≤ θ. Thus,

E(θ̂MLE) =
∫ θ

0
10 θ−10 t10 dt =

10
11

θ.

An unbiased estimator of θ which is a function of the MLE is given by

θ̂B =
11
10

max{Y1, . . . , Y10}.

Also, note that

E(θ̂2
MLE) =

∫ θ

0
10 θ−10 t11 dt =

10
12

θ2.

6. (c) From (a), we conclude

Var(θ̂MOM) = 4 Var(Y ) =
4
10

Var(Y1) =
4θ2

10 · 12
=

θ2

30
.

From (b), we conclude

Var(θ̂B) =
121
100

Var(max{Y1, . . . , Y10}) =
121
100

(
10
12
− 100

121

)
θ2 =

θ2

120
.

Thus,

eff(θ̂MOM, θ̂B) =
Var(θ̂B)

Var(θ̂MOM)
=

1
4
.



Since both θ̂MOM and θ̂B are unbiased, the one with the smaller variance is preferrable, namely
θ̂B.

6. (d) Since
log fY (y|θ) = − log θ,

we find
∂2

∂θ2
log fY (y|θ) =

1
θ2

Thus,

I(θ) = −E
(

∂2

∂θ2
log fY (Y |θ)

)
= − 1

θ2
.

6. (e) The Cramer-Rao inequality tells us that that if θ̂ is any unbiased estimator of θ based
on Y1, . . . , Y10, then

Var(θ̂) ≥ 1
10 I(θ)

=
−θ2

10
.

Of course, for any random variable X, Var(X) ≥ 0. Thus, having a negative lower bound in the
C-R inequality is useless. It give us no new information. The problem in this question arises
from the fact that the density function of a uniform random variable is discontinuous. Therefore,
technically, the computation of the Fisher inequality is invalid. My reason for asking you this
question was to draw your attention to this important fact.

7. (a) Suppose that θ̂ is an estimator of θ. The random interval [L(θ̂), U(θ̂)] is a 93% confidence
interval for θ if

P (L(θ̂) ≤ θ ≤ U(θ̂)) = 0.93.

Hence, we interpret a 93% confidence interval to mean that before the data have been observed,
there is a 93% chance that the parameter will lie in the random interval. However, once the
data have been observed, no such probability statement is true. Either the given interval does
or does not contain θ. Alternatively, if many, many intervals are observed, each constructed
using the same formula, then the long-run average that will contain θ is 0.93.

7. (b) It is desirable to find unbiased estimators because by having an unbiased estimator we
know E(θ̂) = θ. Thus, the most likely “value” of θ̂ is θ. If we have the unbiased estimator
with the smallest variance, then the distribution of θ̂ is clustered as tightly as possible about its
mean, namely θ. Thus, the MVUE is the “most likely” of all unbiased estimators to be “closest”
to θ.

8. (a) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, since Y ∼ N (µ, 9/n),

0.05 = PH0(reject H0) = Pµ=0(Y > c) = P

(
Y − 0
3/
√

n
>

c− 0
3/
√

n

)
= P (Z > c

√
n / 3),

where Z ∼ N (0, 1). From Table 4, we find that P (Z > 1.65) = 0.05. Therefore, we must have

c
√

n

3
= 1.96 or c =

4.95√
n

.



8. (b) By definition, the power of a hypothesis test is the probability under HA that H0 is
rejected. Hence, when µ = 1, n = 36, we find c = 0.825, so that

power = Pµ=1(Y > 0.825) = P

(
Y − 1
3/
√

36
>

0.825− 1
3/
√

36

)
= P (Z > −0.36) = 1− 0.3594 = 0.6406

where Z ∼ N (0, 1). (The last step follows from Table 4.)

8. (c) As in (a) and (b),

power = Pµ=1

(
Y >

4.95√
n

)
= P

(
Z >

4.95/
√

n− 1
3/
√

n

)
= P (Z > 1.65−

√
n/3).

Hence, as n increases (→∞), 1.65−
√

n/3 decreases monotonically (→ −∞), so that the power
increases monotonically (→ 1). In particular, if m > n, then

P (Z > 1.65−
√

n/3 ) < P (Z > 1.65−
√

m/3 ).

This indeed makes sense intuitively. As the sample size increases, it becomes easier to detect
that µ = 1 is false.

9. (a) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, since Y ∼ N (µ, 4/n),

α = PH0(reject H0) = Pµ=0(Y > 3.92/
√

n) = P

(
Y − 0
2/
√

n
>

3.92/
√

n− 0
2/
√

n

)
= P (Z > 1.96) = 0.025,

where Z ∼ N (0, 1). (The last step follows from Table 4.) Hence, we see that the hypothesis test
does, in fact, have significance level α = 0.025.

9. (b) By definition, the power of a hypothesis test is the probability under HA that H0 is
rejected. Hence, when µ = 0.5, we find

power = PHA
(reject H0) = Pµ=0.5(Y > 3.92/

√
n) = P

(
Y − 0.5
2/
√

n
>

3.92/
√

n− 0.5
2/
√

n

)
= P (Z > 1.96− 0.25

√
n )

where Z ∼ N (0, 1). If we desire the test to have power 0.9, then using Table 4, we find
P (Z > −1.28) = 0.90. Thus, we require that n satisfy

1.96− 0.25
√

n = −1.28 or n ≈ 168.

(In fact, we can take n ≥ 168 to guarantee that the test will have power (at least) 0.9 when
µ = 0.5.

10. Draw a picture! From the scenario presented, we know that John rejects H0 if and only if
p ≤ 0.01, and that George rejects H0 if and only if p ≤ 0.05. Since Ringo’s p-value is smaller
than 0.03, we can conclude immediately that George will reject the null hypothesis. However,
John cannot make a decision. We are only told that Ringo’s p-value is smaller than 0.03. We



do not know, therefore, how it compares to John’s desired significance level of α = 0.01. (It
could be the case that 0.01 < p < 0.03 or it could be the case that p < 0.01 < 0.03. These yield
different conclusions for John.)

11. Consider a hypothesis test of H0 : θ = θ0 against HA where HA could be any one of
HA : θ 6= θ0, HA : θ > θ0, or HA : θ < θ0. The significance level α is simply the probability of a
Type I error. A Type I error occurs if H0 is rejected when, in fact, H0 is true. Thus,

α = P (Type I error) = PH0(reject H0).

12. In this problem, we find that α = Pµ=0(Y < c) and β = Pµ=−1/2(Y > c) . Since
Y ∼ N (µ, σ2/n) = N (µ, 0.25), we conclude that

α = Pµ=0(Y < c) = P

(
Y − 0√

0.25
<

c− 0√
0.25

)
= P (Z < 2c)

and

β = Pµ=−1/2(Y > c) = P

(
Y + 1/2√

0.25
>

c + 1/2√
0.25

)
= P (Z > 2c + 1)

where Z ∼ N (0, 1). In order for α = β, we require that P (Z < 2c) = P (Z > 2c + 1). Since
the standard normal distribution is symmetric about 0, we see that we must have −2c = 2c + 1
or c = −1/4. (DRAW A PICTURE TO SEE WHERE THE MINUS SIGN COMES FROM!)
Consulting Table 4, we find that with c = −1/4, the significance level of this test is

α = P (Z < −1/2) = 0.3085.

13. (a) The samplig distribution of this estimator is vital in order to construct confidence
intervals (either exactly by the pivotal method or approximately using the MLE and Fisher
information) and to conduct hypothesis tests (either exactly or using the likelihood ratio test
approximation). The sampling distribution is also needed so that the accuracy (bias, mean-
squared error, etc.) of the estimator can be evaluated.

13. (b) You might want additional pieces of information such as the p-value of the test, the
power (which can be computed exactly since both hypotheses are simple), how the data was
collected, the sampling distribution of the test statistic, how the test was conducted (likelihood
ratio test, CI-HT duality, Z-test, T -test, χ2-test, etc.), and whether or not any approximations
were made.

14. (a) By the confidence interval–hypothesis test duality, we do not reject H0 : θ = 5 if and
only if 5 ∈ (X − 1, X + 2). In other words, we reject H0 if 5 ≤ X − 1 or if 5 ≥ X + 2. Hence,
the required rejection region is

RR = {X ≤ 3 or X ≥ 6}.

14. (b) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, we must find c so that

19
100

= PH0(reject H0) = Pθ=1(max{Y1, Y2} > c).



Since Y1, Y2 are independent Uniform(0, θ) random variables, we find

Pθ=1(max{Y1, Y2} ≤ c) = [Pθ=1(Y1 ≤ c)]2 =
[∫ c

0
1 dy

]2

= c2

and so Pθ=1(max{Y1, Y2} > c) = 1− c2. Setting

19
100

= 1− c2 implies c =
9
10

.

By definition, the power of a hypothesis test is the probability under HA that H0 is rejected.
Hence, we find

power = PHA
(reject H0) = Pθ>1

(
max{Y1, Y2} >

9
10

)
= 1− Pθ>1

(
max{Y1, Y2} ≤

9
10

)
= 1−

[
Pθ>1

(
Y1 ≤

9
10

)]2

= 1−

[∫ 9/10

0

1
θ

dy

]2

= 1− 81
100 θ2

.

15. (a) If X1, X2, X3 are i.i.d. Exponential(λ) random variables and Y = min{X1, X2, X3}, then
for y > 0,

P (Y > y) = [P (X1 > y)]3 = [1− P (X1 ≤ y)]3 = [1− (1− e−y/λ)]3 = e−3y/λ.

That is,

FY (y) = 1− e−3y/λ and fY (y) =
3
λ

e−3y/λ, y > 0,

implying that Y ∼ Exponential(λ/3).

15. (b) The likelihood function is

L(λ) = fY (y|λ) =
3
λ

e−3y/λ

(since there is n = 1 random variable, namely Y ). In order to maximize the likelihood function,
we attempt to maximize the log-likelihood function

`(λ) = log 3− log λ− 3y

λ
.

Since
`′(λ) = − 1

λ
+

3y

λ2

so that `′(λ) = 0 implies λ = 3y, and since

`′′(λ) =
1
λ2
− 6y

λ3

so that
`′′(3y) = − 1

9y2
< 0,



we conclude from the second derivative test that

λ̂MLE = 3Y.

15. (c) We begin by noting that MSE(λ̂MLE) = Var(λ̂MLE)+[B(λ̂MLE)]2. Since Y ∼ Exponential(λ/3),
we find

E(Y ) =
λ

3
and Var(Y ) =

λ2

9
.

This implies that Var(λ̂MLE) = Var(3Y ) = 9 Var(Y ) = λ2 and E(λ̂MLE) = E(3Y ) = 3E(Y ) = λ
so that B(λ̂MLE) = 0. Hence,

MSE(λ̂MLE) = Var(λ̂MLE) + [B(λ̂MLE)]2 = λ2 + 0 = λ2.

15. (d) We find

log fY (y|λ) = log 3− log λ− 3y

λ

and so
∂2

∂λ2
log fY (y|λ) =

1
λ2
− 6y

λ3
.

Thus,

I(λ) = −E
(

∂2

∂λ2
log fY (Y |λ)

)
= −E

(
1
λ2
− 6Y

λ3

)
=

6E(Y )
λ3

− 1
λ2

=
1
λ2

.

The Cramer-Rao inequality tells us that any unbiased estimator λ̂ of λ must satisfy

Var(λ̂) ≥ 1
I(λ)

= λ2

(since n = 1 in this problem). Since

Var(λ̂MLE) = λ2 =
1

I(λ)

we have found an unbiased estimator whose variance attains the lower bound of the Cramer-Rao
inequality. Hence, λ̂MLE must be the MVUE of λ.


