Stat 252.01 Winter 2007
Assignment \#7 Solutions
Important Remark: The factorizations of $L$ into $L=g \cdot h$ are not unique. Many answers are possible.

Important Remark: Any one-to-one function of a sufficient statistic for $\theta$ is also sufficient for $\theta$.
(9.30) If $Y_{1}, \ldots, Y_{n}$ are iid $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables each with density

$$
f_{Y}\left(y \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}\right\},
$$

then the likelihood function is

$$
L\left(\mu, \sigma^{2}\right)=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}\right\}
$$

(a) If $\mu$ is unknown, and $\sigma^{2}$ is known, then with

$$
\begin{gathered}
u=\bar{y}, \quad g(u, \mu)=\exp \left\{\frac{1}{2 \sigma^{2}}\left(2 \mu n u-\mu^{2}\right)\right\}, \\
h\left(y_{1}, \ldots, y_{n}\right)=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} y_{i}^{2}\right\},
\end{gathered}
$$

the Factorization Theorem implies $\bar{Y}$ is sufficient for $\mu$.
(b) If $\mu$ is known, and $\sigma^{2}$ is unknown, then with

$$
\begin{gathered}
u=\sum_{i=1}^{n}\left(y_{i}-\mu\right)^{2}, \quad g\left(u, \sigma^{2}\right)=\left(\sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} u\right\}, \\
h\left(y_{1}, \ldots, y_{n}\right)=(2 \pi)^{-n / 2},
\end{gathered}
$$

the Factorization Theorem implies $\sum_{i=1}^{n}\left(Y_{i}-\mu\right)^{2}$ is sufficient for $\sigma^{2}$.
(c) If both $\mu$ and $\sigma^{2}$ are unknown, then with

$$
\begin{gathered}
u=\left(u_{1}, u_{2}\right)=\left(\sum_{i=1}^{n} y_{i}, \sum_{i=1}^{n} y_{i}^{2}\right), \\
g\left(u,\left(\mu, \sigma^{2}\right)\right)=g\left(\left(u_{1}, u_{2}\right),\left(\mu, \sigma^{2}\right)\right)=\left(\sigma^{2}\right)^{-n / 2} \exp \left\{\frac{1}{2 \sigma^{2}}\left(2 \mu u_{1}+u_{2}-\mu^{2}\right)\right\}, \\
h\left(y_{1}, \ldots, y_{n}\right)=(2 \pi)^{-n / 2},
\end{gathered}
$$

the Factorization Theorem implies $\left(\sum_{i=1}^{n} Y_{i}, \sum_{i=1}^{n} Y_{i}^{2}\right)$ is jointly sufficient for $\left(\mu, \sigma^{2}\right)$.
(9.34) If $Y_{1}, \ldots, Y_{n}$ are iid geometric random variables each with density

$$
f_{Y}(y \mid p)=p(1-p)^{y}
$$

for $y=1,2,3, \ldots$, then the likelihood function is

$$
L(p)=p(1-p)^{\sum_{i=1}^{n} y_{i}}
$$

If

$$
u=\bar{y}, \quad g(u, p)=p(1-p)^{n u}, \quad \text { and } \quad h\left(y_{1}, \ldots, y_{n}\right)=1
$$

then since $L(p)=g(u, p) \cdot h\left(y_{1}, \ldots, y_{n}\right)$, we conclude by the Factorization Theorem that $\bar{Y}$ is sufficient for $p$.
(9.36) If $Y_{1}, \ldots, Y_{n}$ are iid each with density

$$
f_{Y}(y \mid \alpha, \beta)=\alpha \beta^{\alpha} y^{-(\alpha+1)}
$$

for $y \geq \beta$, then for fixed $\beta$ the likelihood function is

$$
L(\alpha)=\alpha^{n} \beta^{n \alpha}\left(\prod_{i=1}^{n} y_{i}\right)^{-(\alpha+1)}
$$

If

$$
u=\prod_{i=1}^{n} y_{i}, \quad g(u, \alpha)=\alpha^{n} \beta^{n \alpha} u^{-(\alpha+1)}, \quad \text { and } \quad h\left(y_{1}, \ldots, y_{n}\right)=1
$$

then since $L(\alpha)=g(u, \alpha) \cdot h\left(y_{1}, \ldots, y_{n}\right)$, we conclude by the Factorization Theorem that $\prod_{i=1}^{n} Y_{i}$ is sufficient for $\alpha$.
(9.74) (a) If $Y_{1}, \ldots, Y_{n}$ are a random sample from the density function

$$
f_{Y}(y \mid \theta)=\frac{1}{\theta} r y^{r-1} e^{-y^{r} / \theta}, \quad y>0
$$

where $\theta>0$ is a parameter, then the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f_{Y}\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} r y_{i}^{r-1} e^{-y_{i}^{r} / \theta}=\theta^{-n} \cdot r^{n} \cdot\left(\prod_{i=1}^{n} y_{i}\right)^{r-1} \cdot \exp \left(-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{r}\right)
$$

If

$$
u=\sum_{i=1}^{n} y_{i}^{r}, \quad g(u, \theta)=\theta^{-n} \cdot \exp \left(-\frac{u}{\theta}\right), \quad h\left(y_{1}, \ldots, y_{n}\right)=r^{n} \cdot\left(\prod_{i=1}^{n} y_{i}\right)^{r-1}
$$

then the Factorization Theorem implies $\sum_{i=1}^{n} Y_{i}^{r}$ is sufficient for $\theta$.
(c) Since the MLE obtained in (b), namely

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r}
$$

is a (one-to-one function of the) sufficient statistic from (a), we conclude that if it is unbiased, or can be adjusted to be unbiased, then the MVUE of $\theta$ will be obtained. Since the $Y_{i}$ are iid, we find

$$
E\left(\hat{\theta}_{\mathrm{MLE}}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}^{r}\right)=E\left(Y_{1}^{r}\right)=\int_{0}^{\infty} y^{r} f_{Y}(y \mid \theta) d y=\frac{r}{\theta} \int_{0}^{\infty} y^{2 r-1} e^{-y^{r} / \theta} d y
$$

To compute this integral, we use the substitution $x=y^{r}, d x=r y^{r-1} d r$ so that

$$
E\left(\hat{\theta}_{\mathrm{MLE}}\right)=\frac{r}{\theta} \int_{0}^{\infty} y^{2 r-1} e^{-y^{r} / \theta} d y=\int_{0}^{\infty} \frac{x}{\theta} e^{-x / \theta} d x=\theta
$$

since we recognize the last integral as the mean of a $\operatorname{Gamma}(1, \theta)$ random variable. Therefore,

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r}
$$

is the MVUE of $\theta$.
(9.75) (b) Since $Y_{1}, \ldots, Y_{n}$ are i.i.d. Uniform $(0,2 \theta+1)$ random variables, then the variance of the underlying distribution is

$$
\frac{(2 \theta+1)^{2}}{12}
$$

In part (a) we determined that the maximum likelihood estimator of $\theta$ is

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{\max \left\{Y_{1}, \ldots, Y_{n}\right\}-1}{2}
$$

Therefore, the required MLE is

$$
\frac{\left(2 \hat{\theta}_{\mathrm{MLE}}+1\right)^{2}}{12}=\frac{\left(2 \frac{\max \left\{Y_{1}, \ldots, Y_{n}\right\}-1}{2}+1\right)^{2}}{12}=\frac{\left(\max \left\{Y_{1}, \ldots, Y_{n}\right\}\right)^{2}}{12}
$$

(9.80) If $Y_{1}, \ldots, Y_{n}$ are i.i.d. with common density

$$
f_{Y}(y \mid \theta)=(\theta+1) y^{\theta}, \quad 0<y<1
$$

where $\theta>-1$ is a parameter, then the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f_{Y}\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n}(\theta+1) y_{i}^{\theta}=(\theta+1)^{n}\left(\prod_{i=1}^{n} y_{i}\right)^{\theta}
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$, or equivalently, by maximizing the log-likelihood function $\ell(\theta)$ given by

$$
\ell(\theta)=n \log (\theta+1)+\theta \sum_{i=1}^{n} \log y_{i}
$$

Since

$$
\ell^{\prime}(\theta)=\frac{n}{\theta+1}+\sum_{i=1}^{n} \log y_{i}
$$

we find $\ell^{\prime}(\theta)=0$ when

$$
\frac{n}{\theta+1}+\sum_{i=1}^{n} \log y_{i}=0 \quad \text { or } \quad \theta=-\frac{n}{\sum_{i=1}^{n} \log y_{i}}-1
$$

Finally

$$
\ell^{\prime \prime}(\theta)=-\frac{n}{(\theta+1)^{2}}<0
$$

so that by the second derivative test we conclude,

$$
\hat{\theta}_{\mathrm{MLE}}=-\frac{n}{\sum_{i=1}^{n} \log Y_{i}}-1
$$

Recall that in Exercise (9.61) we found

$$
\hat{\theta}_{\mathrm{MOM}}=\frac{2 \bar{Y}-1}{1-\bar{Y}}
$$

(9.81) If a coin is tossed twice, then there are three possibilities for the number of heads, namely 0,1 , or 2 . If the probability of flipping heads is $p$, then

$$
P(Y=0)=(1-p)^{2}, \quad P(Y=1)=2 p(1-p), \quad P(Y=2)=p^{2}
$$

It is a simple matter of plugging in the two possible values of $p$, namely $1 / 4$ and $3 / 4$ to determine that

- $p=1 / 4$ maximizes $P(Y=0)$,
- both $p=1 / 4$ and $p=3 / 4$ maximize $P(Y=1)$,
- $p=3 / 4$ maximizes $P(Y=2)$.

Since the maximum likelihood estimator of $p$ is simply the value that maximizes the likelihood function, we begin by determining the likelihood function. By definition, the likelihood function $L(p)$ is the product of the densities of the random variables in the sample. Since there is only one random variable being observed, we find that $L(p)$ is simply the density of $Y$, namely

$$
P(Y=0)=(1-p)^{2}, \quad P(Y=1)=2 p(1-p), \quad P(Y=2)=p^{2}
$$

Thus, the MLE depends on the observed value $y$ so that

- if $y=0$, then $\hat{p}_{\text {MLE }}=1 / 4$,
- if $y=1$, then $\hat{p}_{\text {MLE }}=1 / 4$ and $\hat{p}_{\text {MLE }}=3 / 4$ (there is no unique maximum),
- if $y=2$, then $\hat{p}_{\text {MLE }}=3 / 4$.

