1. Textbook

(8.40) (a) By definition, if $0<y<\theta$, then

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{Y}(u) d u=\int_{0}^{y} \frac{2(\theta-u)}{\theta^{2}} d u=\left.\frac{\left(2 \theta u-u^{2}\right)}{\theta^{2}}\right|_{0} ^{y}=\frac{\left(2 \theta y-y^{2}\right)}{\theta^{2}}=\frac{2 y}{\theta}-\frac{y^{2}}{\theta^{2}}
$$

That is,

$$
F_{Y}(y)= \begin{cases}0, & y \leq 0 \\ \frac{2 y}{\theta}-\frac{y^{2}}{\theta^{2}}, & 0<y<1 \\ 1, & y \geq \theta\end{cases}
$$

(b) If $U=Y / \theta$, then for $0<u<1$,

$$
F_{U}(u)=P(U \leq u)=P(Y \leq u \theta)=\frac{2 u \theta}{\theta}-\frac{u^{2} \theta^{2}}{\theta^{2}}=2 u-u^{2}
$$

Since the distribution of U does not depend on θ, this shows that $U=Y / \theta$ is a pivotal quantity.
(c) A 90% lower confidence limit for θ is therefore found by finding a such that $P(U>a)=0.10$ for then we will have

$$
P(U>a)=P\left(\frac{Y}{\theta}>a\right)=P\left(\theta<\frac{Y}{a}\right)=0.10
$$

Solving

$$
0.10=P(U>a)=\int_{a}^{1} f_{u}(u) d u=\int_{a}^{1}(2-2 u) d u=1-2 a+a^{2}
$$

for a gives $a=1-\sqrt{0.10}$ (use the quadratic formula and reject the root for which $a>1$) so that

$$
P\left(\theta<\frac{Y}{1-\sqrt{0.10}}\right)=0.10 \quad \text { or, equivalently, } \quad P\left(\theta \geq \frac{Y}{1-\sqrt{0.10}}\right)=0.90
$$

(8.41) (a) A 90% upper confidence limit for θ is found by finding b such that $P(U<b)=0.10$ for then we will have

$$
P(U<b)=P\left(\frac{Y}{\theta}<b\right)=P\left(\theta>\frac{Y}{b}\right)=0.10
$$

Solving

$$
0.10=P(U<b)=\int_{0}^{b} f_{u}(u) d u=\int_{0}^{b}(2-2 u) d u=1-2 b+b^{2}
$$

for b gives $b=1-\sqrt{0.90}$ (use the quadratic formula and reject the root for which $b>1$) so that

$$
P\left(\theta>\frac{Y}{1-\sqrt{0.90}}\right)=0.10 \quad \text { or, equivalently, } \quad P\left(\theta \leq \frac{Y}{1-\sqrt{0.90}}\right)=0.90
$$

(b) We know from (8.40) (c) that

$$
P\left(\theta<\frac{Y}{1-\sqrt{0.10}}\right)=0.10
$$

and we know from (8.41) (a) that

$$
P\left(\theta>\frac{Y}{1-\sqrt{0.90}}\right)=0.10
$$

Therefore,

$$
P\left(\frac{Y}{1-\sqrt{0.90}} \leq \theta \leq \frac{Y}{1-\sqrt{0.10}}\right)=0.80
$$

so that

$$
\left[\frac{Y}{1-\sqrt{0.90}}, \frac{Y}{1-\sqrt{0.10}}\right]
$$

is an 80% confidence interval for θ.
(8.6) Recall that a Poisson (λ) random variable has mean λ and variance λ. This was also done in Stat 251.
(a) Since λ is the mean of a Poisson (λ) random variable, then a natural unbiased estimator for λ is

$$
\hat{\lambda}=\bar{Y}
$$

(As you saw in problem (8.4), there is NO unique unbiased estimator, so many other answers are possible.) It is a simple matter to compute that

$$
\mathbb{E}(\hat{\lambda})=\mathbb{E}(\bar{Y})=\lambda \quad \text { and } \operatorname{Var}(\hat{\lambda})=\frac{\lambda}{n}
$$

We will need these in (c).
(b) If $C=3 Y+Y^{2}$, then

$$
\mathbb{E}(C)=\mathbb{E}(3 Y)+\mathbb{E}\left(Y^{2}\right)=3 \mathbb{E}(Y)+\left(\operatorname{Var}(Y)+[\mathbb{E}(Y)]^{2}\right)=3 \lambda+\left(\lambda+\lambda^{2}\right)=4 \lambda+\lambda^{2}
$$

(c) This part is a little tricky. There is NO algorithm to solve it; instead you must THINK. Since $\mathbb{E}(C)$ depends on the parameter λ, we do not know its actual value. Therefore, we can estimate it. Suppose that $\theta=\mathbb{E}(C)$. Then, a natural estimator of $\theta=4 \lambda+\lambda^{2}$ is

$$
\hat{\theta}=4 \hat{\lambda}+\hat{\lambda}^{2}
$$

where $\hat{\lambda}=\bar{Y}$ as in (a). However, if we compute $\mathbb{E}(\hat{\lambda})$ we find

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}(4 \hat{\lambda})+\mathbb{E}\left(\hat{\lambda}^{2}\right)=4 \mathbb{E}(\hat{\lambda})+\left(\operatorname{Var}(\hat{\lambda})+[\mathbb{E}(\hat{\lambda})]^{2}\right)=4 \lambda+\frac{\lambda}{n}+\lambda^{2}
$$

This does not equal θ, so that $\hat{\theta}$ is NOT unbiased. However, a little thought shows that if we define

$$
\tilde{\theta}:=4 \hat{\lambda}+\hat{\lambda}^{2}-\frac{\hat{\lambda}}{n}=4 \bar{Y}+\bar{Y}^{2}-\frac{\bar{Y}}{n}
$$

then $\mathbb{E}(\tilde{\theta})=4 \hat{\lambda}+\hat{\lambda}^{2}$ so that $\tilde{\theta}$ IS an unbiased estimator of $\theta=\mathbb{E}(C)$.
(8.8) If Y is a $\operatorname{Uniform}(\theta, \theta+1)$ random variable, then its density is

$$
f(y)= \begin{cases}1, & \theta \leq y \leq \theta+1 \\ 0, & \text { otherwise }\end{cases}
$$

It is a simple matter to compute

$$
\mathbb{E}(Y)=\frac{2 \theta+1}{2} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{1}{12} .
$$

(a) Hence,

$$
\mathbb{E}(\bar{Y})=\mathbb{E}\left(\frac{Y_{1}+\cdots+Y_{n}}{n}\right)=\frac{\mathbb{E}\left(Y_{1}\right)+\cdots+\mathbb{E}\left(Y_{n}\right)}{n}=\frac{\frac{2 \theta+1}{2}+\cdots+\frac{2 \theta+1}{2}}{n}=\frac{2 n \theta+n}{2 n}=\theta+\frac{1}{2} .
$$

We now find

$$
B(\bar{Y})=\mathbb{E}(\bar{Y})-\theta=\left(\theta+\frac{1}{2}\right)-\theta=\frac{1}{2}
$$

(b) A little thought shows that our calculation in (a) immediately suggests a natural unbiased estimator of θ, namely

$$
\hat{\theta}=\bar{Y}-\frac{1}{2} .
$$

(c) We first compute that

$$
\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{Y_{1}+\cdots+Y_{n}}{n}\right)=\frac{\operatorname{Var}\left(Y_{1}\right)+\cdots+\operatorname{Var}\left(Y_{n}\right)}{n^{2}}=\frac{1 / 12+\cdots+1 / 12}{n^{2}}=\frac{1}{12 n}
$$

As on page 367 ,

$$
\operatorname{MSE}(\bar{Y})=\operatorname{Var}(\bar{Y})+[B(\bar{Y})]^{2}
$$

so that

$$
\operatorname{MSE}(\bar{Y})=\frac{1}{12 n}+\left(\frac{1}{2}\right)^{2}=\frac{3 n+1}{12 n}
$$

(8.9) (a) Let $\theta=\operatorname{Var}(Y)$, and $\hat{\theta}=n(Y / n)(1-Y / n)$. To prove $\hat{\theta}$ is unbiased, we must show that $\mathbb{E}(\hat{\theta}) \neq \theta$. Since

$$
\mathbb{E}(\hat{\theta})=\mathbb{E}(n(Y / n)(1-Y / n))=\mathbb{E}(Y)-\frac{1}{n} \mathbb{E}\left(Y^{2}\right)
$$

and since Y is $\operatorname{Binomial}(n, p)$ so that $\mathbb{E}(Y)=n p, \mathbb{E}\left(Y^{2}\right)=\operatorname{Var}(Y)+[\mathbb{E}(Y)]^{2}=n p(1-p)+n^{2} p^{2}$, we conclude that

$$
\mathbb{E}(\hat{\theta})=n p-\frac{n p(1-p)+n^{2} p^{2}}{n}=(n-1) p(1-p)
$$

(b) As an unbiased estimator, use

$$
\frac{n}{n-1} \hat{\theta}=n\left(\frac{Y}{n-1}\right)\left(1-\frac{Y}{n}\right) .
$$

(8.34) Let $\theta=V(Y):=\operatorname{Var}(Y)$. If Y is a geometric random variable, then

$$
\mathbb{E}\left(Y^{2}\right)=V(Y)+[\mathbb{E}(Y)]^{2}=\frac{2}{p^{2}}-\frac{1}{p} .
$$

Now a little thought shows that

$$
\mathbb{E}\left(\frac{Y^{2}}{2}-\frac{Y}{2}\right)=\frac{1}{p^{2}}-\frac{1}{2 p}-\frac{1}{2 p}=\frac{1}{p^{2}}-\frac{1}{p}=\frac{1-p}{p^{2}}=\theta
$$

Thus, choose

$$
\hat{V}(Y)=\hat{\theta}=\frac{Y^{2}-Y}{2}
$$

If Y is used to estimate $1 / p$, then a two standard error bound on the error of estimation is given by

$$
2 \sqrt{\hat{V}(Y)}=2 \sqrt{\hat{\theta}}=2 \sqrt{\frac{Y^{2}-Y}{2}}
$$

2. Textbook

(8.4) (a) Recall that if Y has the exponential density as given in the problem, then $\mathbb{E}(Y)=\theta$. In order to decide which estimators are unbiased, we simply compute $\mathbb{E}\left(\hat{\theta}_{i}\right)$ for each i. Four of these are easy:

$$
\begin{aligned}
& \mathbb{E}\left(\hat{\theta}_{1}\right)=\mathbb{E}\left(Y_{1}\right)=\theta \\
& \mathbb{E}\left(\hat{\theta}_{2}\right)=\mathbb{E}\left(\frac{Y_{1}+Y_{2}}{2}\right)=\frac{\mathbb{E}\left(Y_{1}\right)+\mathbb{E}\left(Y_{2}\right)}{2}=\frac{\theta+\theta}{2}=\theta ; \\
& \mathbb{E}\left(\hat{\theta}_{3}\right)=\mathbb{E}\left(\frac{Y_{1}+2 Y_{2}}{3}\right)=\frac{\mathbb{E}\left(Y_{1}\right)+2 \mathbb{E}\left(Y_{2}\right)}{3}=\frac{\theta+2 \theta}{3}=\theta \\
& \mathbb{E}\left(\hat{\theta}_{5}\right)=\mathbb{E}(\bar{Y})=\mathbb{E}\left(\frac{Y_{1}+Y_{2}+Y_{3}}{3}\right)=\frac{\mathbb{E}\left(Y_{1}\right)+\mathbb{E}\left(Y_{2}\right)+\mathbb{E}\left(Y_{3}\right)}{3}=\frac{\theta+\theta+\theta}{3}=\theta .
\end{aligned}
$$

In order to compute $\mathbb{E}\left(\hat{\theta}_{4}\right)=\mathbb{E}\left(\min \left\{Y_{1}, Y_{2}, Y_{3}\right\}\right)$ we need to do a bit of work, namely

$$
\begin{aligned}
P\left(\min \left\{Y_{1}, Y_{2}, Y_{3}\right\}>t\right)=P\left(Y_{1}>t, Y_{2}>t, Y_{3}>t\right) & =P\left(Y_{1}>t\right) \cdot P\left(Y_{2}>t\right) \cdot P\left(Y_{3}>t\right) \\
& =\left[P\left(Y_{1}>t\right)\right]^{3} \\
& =e^{-3 t / \theta}
\end{aligned}
$$

Thus, $f(t)=(3 / \theta) e^{-3 t / \theta}, t>0$, which, as you will notice, is the density of an $\operatorname{Exp}(\theta / 3)$ random variable. Thus,

$$
\mathbb{E}\left(\hat{\theta}_{4}\right)=\mathbb{E}\left(\min \left\{Y_{1}, Y_{2}, Y_{3}\right\}\right)=\frac{\theta}{3}
$$

Hence, $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}$, and $\hat{\theta}_{5}$ are unbiased, while $\hat{\theta}_{4}$ is biased.
(b) To decide which has the smallest variance, we simply compute. Recall that an $\operatorname{Exp}(\theta)$ random variable has variance θ^{2}. Thus,
$\operatorname{Var}\left(\hat{\theta}_{1}\right)=\operatorname{Var}\left(Y_{1}\right)=\theta^{2} ;$
$\operatorname{Var}\left(\hat{\theta}_{2}\right)=\operatorname{Var}\left(\frac{Y_{1}+Y_{2}}{2}\right)=\frac{\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)}{4}=\frac{\theta^{2}+\theta^{2}}{4}=\frac{\theta^{2}}{2} ;$
$\operatorname{Var}\left(\hat{\theta}_{3}\right)=\operatorname{Var}\left(\frac{Y_{1}+2 Y_{2}}{3}\right)=\frac{\operatorname{Var}\left(Y_{1}\right)+4 \operatorname{Var}\left(Y_{2}\right)}{9}=\frac{\theta^{2}+4 \theta^{2}}{9}=\frac{5 \theta^{2}}{9} ;$
$\operatorname{Var}\left(\hat{\theta}_{5}\right)=\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{Y_{1}+Y_{2}+Y_{3}}{3}\right)=\frac{\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)+\operatorname{Var}\left(Y_{3}\right)}{9}=\frac{\theta^{2}+\theta^{2}+\theta^{2}}{9}=\frac{\theta^{2}}{3} ;$
and so $\hat{\theta}_{5}$ has the smallest variance. In fact, we will show later that it is the minimum variance unbiased estimator. That is, no other unbiased estimator of the mean will have smaller variance than \bar{Y}.
(9.7) If $\operatorname{MSE}\left(\hat{\theta}_{1}\right)=\theta^{2}$, then $\operatorname{Var}\left(\hat{\theta}_{1}\right)=\operatorname{MSE}\left(\hat{\theta}_{1}\right)=\theta^{2}$ since $\hat{\theta}_{1}$ is unbiased. If $\hat{\theta}_{2}=\bar{Y}$, then since the Y_{i} are exponential, we conclude $\mathbb{E}(\bar{Y})=\theta$ and $\operatorname{Var}(\bar{Y})=\theta^{2} / n$. Thus,

$$
\operatorname{Eff}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=\frac{\operatorname{Var}\left(\hat{\theta}_{2}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)}=\frac{1}{n} .
$$

3. If Y_{1}, \ldots, Y_{n} are i.i.d. $\operatorname{Uniform}(0, \theta)$, and $X:=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$, then

$$
P(X \leq x)=P\left(Y_{1} \leq x\right) \cdots P\left(Y_{n} \leq x\right)=\frac{x^{n}}{\theta^{n}}, \quad 0 \leq x \leq \theta
$$

It therefore follows that the density of X is

$$
f_{X}(x)=\frac{n x^{n-1}}{\theta^{n}}, \quad 0 \leq x \leq \theta
$$

Hence,

$$
\mathbb{E}(X)=\int_{0}^{\theta} x \cdot \frac{n x^{n-1}}{\theta^{n}} d x=\frac{n}{\theta^{n}} \cdot \frac{\theta^{n+1}}{n+1}=\frac{n \theta}{n+1}
$$

and so if $\hat{\theta}_{3}=\frac{(n+1)}{n} \max \left\{Y_{1}, \ldots, Y_{n}\right\}=\frac{(n+1)}{n} X$, we find

$$
\mathbb{E}\left(\hat{\theta}_{3}\right)=\frac{(n+1) \mathbb{E}(X)}{n}=\theta
$$

so that $\hat{\theta}_{3}$ is an unbiased estimator of θ. Furthermore,

$$
\mathbb{E}\left(X^{2}\right)=\int_{0}^{\theta} x^{2} \cdot \frac{n x^{n-1}}{\theta^{n}} d x=\frac{n}{\theta^{n}} \cdot \frac{\theta^{n+2}}{n+2}=\frac{n \theta^{2}}{n+2}
$$

so that

$$
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{n \theta^{2}}{n+2}-\frac{n^{2} \theta^{2}}{(n+1)^{2}}
$$

and

$$
\operatorname{Var}\left(\hat{\theta}_{3}\right)=\frac{(n+1)^{2}}{n^{2}} \operatorname{Var}(X)=\left(\frac{(n+1)^{2}}{n^{2}} \cdot \frac{n}{n+2}-1\right) \theta^{2}=\frac{\theta^{2}}{n(n+2)}
$$

We now find

$$
\operatorname{Eff}\left(\hat{\theta}_{1}, \hat{\theta}_{3}\right)=\frac{\operatorname{Var}\left(\hat{\theta}_{3}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)}=\frac{\frac{\theta^{2}}{n(n+2)}}{\frac{\theta^{2}}{3 n}}=\frac{3}{n+2}<1
$$

provided $n>1$. Since $\operatorname{Eff}\left(\hat{\theta}_{1}, \hat{\theta}_{3}\right)<1$, we conclude that $\operatorname{Var}\left(\hat{\theta}_{3}\right)<\operatorname{Var}\left(\hat{\theta}_{1}\right)$ so that in this example $\hat{\theta}_{3}:=\frac{(n+1)}{n} \max \left\{Y_{1}, \ldots, Y_{n}\right\}$ is preferred to $\hat{\theta}_{1}:=2 \bar{Y}$.
4. Since

$$
\log f(y \mid \theta)=2 \log (\theta)-\theta^{2} y
$$

we find

$$
\frac{\partial^{2}}{\partial \theta^{2}} \log f(y \mid \theta)=\frac{-2}{\theta^{2}}-2 y .
$$

Thus,

$$
I(\theta)=-\mathbb{E}\left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(Y \mid \theta)\right)=\frac{2}{\theta^{2}}+2 \mathbb{E}(Y)=\frac{4}{\theta^{2}}
$$

since $\mathbb{E}(Y)=\theta^{-2}$. (This is because $Y \sim \operatorname{Exp}\left(\theta^{-2}\right)$.)

5. Standard Normal Handout

(1.) Observe that

$$
1-\Phi(z)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x-\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

Let $u=-x$ so that $d u=-d x$ and

$$
\int_{z}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=-\int_{-z}^{-\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u=\int_{-\infty}^{-z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u=\Phi(-z)
$$

That is, $1-\Phi(z)=\Phi(-z)$ as required.
(2.) If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then

$$
F_{X}(x)=\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} d u
$$

Let $z=\frac{u-\mu}{\sigma}$ so that $\sigma d z=d u$ and

$$
\int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(u-\mu)^{2}}{2 \sigma^{2}}} d u=\int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d z=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

as required.
(3.) Consider

$$
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} d x
$$

and let $u=\sqrt{2} x$ so that $d u=\sqrt{2} d x$ and

$$
\operatorname{erf}(z)=\frac{\sqrt{2}}{\sqrt{\pi}} \int_{0}^{\sqrt{2} z} e^{-\frac{u^{2}}{2}} d u=2 \cdot \frac{1}{\sqrt{2 \pi}} \int_{0}^{\sqrt{2} z} e^{-\frac{u^{2}}{2}} d u
$$

However,

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{0}^{\sqrt{2} z} e^{-\frac{u^{2}}{2}} d u=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\sqrt{2} z} e^{-\frac{u^{2}}{2}} d u-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{0} e^{-\frac{u^{2}}{2}} d u & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\sqrt{2} z} e^{-\frac{u^{2}}{2}} d u-\frac{1}{2} \\
& =\Phi(\sqrt{2} z)-\frac{1}{2}
\end{aligned}
$$

so that (\dagger) implies

$$
\operatorname{erf}(z)=2 \Phi(\sqrt{2} z)-1
$$

as required.
(5.) By definition,

$$
\mathbb{E}\left(\left(a e^{b Z}-K\right)^{+}\right)=\int_{-\infty}^{\infty}\left(a e^{b z}-K\right)^{+} \phi(z) d z .
$$

Observe, however, that $\left(a e^{b z}-K\right)^{+}:=\max \left\{a e^{b z}-K, 0\right\}$ which implies that the integral above is non-zero provided that $a e^{b z}-K \geq 0$ or $z \geq \frac{1}{b} \log (K / a)$. Therefore,

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(a e^{b z}-K\right)^{+} \phi(z) d z & =\int_{\frac{1}{b} \log (K / a)}^{\infty}\left(a e^{b z}-K\right) \phi(z) d z \\
& =a \int_{\frac{1}{b} \log (K / a)}^{\infty} e^{b z} \phi(z) d z-K \int_{\frac{1}{b} \log (K / a)}^{\infty} \phi(z) d z
\end{aligned}
$$

We now consider separately these last two integrals. We first find

$$
\int_{\frac{1}{b} \log (K / a)}^{\infty} e^{b z} \phi(z) d z=\frac{1}{\sqrt{2 \pi}} \int_{\frac{1}{b} \log (K / a)}^{\infty} e^{b z} e^{-\frac{z^{2}}{2}} d z
$$

and so completing the square gives

$$
\frac{1}{\sqrt{2 \pi}} \int_{\frac{1}{b} \log (K / a)}^{\infty} e^{b z} e^{-\frac{z^{2}}{2}} d z=\frac{e^{b^{2} / 2}}{\sqrt{2 \pi}} \int_{\frac{1}{b} \log (K / a)}^{\infty} \exp \left\{-\frac{(z-b)^{2}}{2}\right\} d z
$$

Letting $u=z-b$ so that $d u=d z$ we find

$$
\frac{e^{b^{2} / 2}}{\sqrt{2 \pi}} \int_{\frac{1}{b} \log (K / a)}^{\infty} \exp \left\{-\frac{(z-b)^{2}}{2}\right\} d z=\frac{e^{b^{2} / 2}}{\sqrt{2 \pi}} \int_{\frac{1}{b} \log (K / a)-b}^{\infty} e^{-\frac{u^{2}}{2}} d z=e^{b^{2} / 2} \Phi\left(b+\frac{1}{b} \log \frac{a}{K}\right) .
$$

Next we find

$$
K \int_{\frac{1}{b} \log (K / a)}^{\infty} \phi(z) d z=K\left[1-\Phi\left(\frac{1}{b} \log (K / a)\right)\right]=K \Phi\left(-\frac{1}{b} \log (K / a)\right)=K \Phi\left(\frac{1}{b} \log \frac{a}{K}\right) .
$$

Combining everything we conclude that

$$
\mathbb{E}\left(\left(a e^{b Z}-K\right)^{+}\right)=a e^{b^{2} / 2} \Phi\left(b+\frac{1}{b} \log \frac{a}{K}\right)-K \Phi\left(\frac{1}{b} \log \frac{a}{K}\right) .
$$

6. Incomplete Gamma Function Handout

(1.) By definition,

$$
\Gamma(a ; y):=\int_{0}^{y} x^{a-1} e^{-x} d x .
$$

If $u=x^{a-1}$ and $d v=e^{-x} d x$ so that $d u=(a-1) x^{a-2} d x$ and $v=-e^{-x}$, then integration by parts gives

$$
\int_{0}^{y} x^{a-1} e^{-x} d x=-\left.x^{a-1} e^{-x}\right|_{0} ^{y}+(a-1) \int_{0}^{y} x^{a-2} e^{-x} d x=-y^{a-1} e^{-y}+(a-1) \int_{0}^{y} x^{a-2} e^{-x} d x
$$

That is,

$$
\Gamma(a ; y)=-y^{a-1} e^{-y}+(a-1) \Gamma(a-1 ; y)
$$

as required.
Since $\Gamma(a ; y)=(a-1) \Gamma(a-1 ; y)-e^{-y} y^{a-1}$ we can solve for $\Gamma(a-1 ; y)$ to conclude

$$
\Gamma(a-1 ; y)=\frac{1}{a-1}\left[\Gamma(a ; y)+e^{-y} y^{a-1}\right]
$$

Replacing $a-1$ by a gives

$$
\Gamma(a ; y)=\frac{1}{a}\left[\Gamma(a+1 ; y)+e^{-y} y^{a}\right]
$$

as required.
(2.) By definition,

$$
G(a ; y):=\int_{y}^{\infty} x^{a-1} e^{-x} d x
$$

and so we have

$$
\Gamma(a ; y)+G(a ; y)=\Gamma(a)
$$

Since $\Gamma(a ; y)=(a-1) \Gamma(a-1 ; y)-e^{-y} y^{a-1}$ we conclude that

$$
\Gamma(a)-G(a ; y)=(a-1)[\Gamma(a-1)-G(a-1 ; y)]-e^{-y} y^{a-1}
$$

and so

$$
\begin{aligned}
G(a ; y) & =\Gamma(a)-(a-1) \Gamma(a-1)+(a-1) G(a-1 ; y)+e^{-y} y^{a-1} \\
& =(a-1) G(a-1 ; y)+e^{-y} y^{a-1}
\end{aligned}
$$

using the fact that $(a-1) \Gamma(a-1)=\Gamma(a)$.

Solving $G(a ; y)=(a-1) G(a-1 ; y)+e^{-y} y^{a-1}$ for $G(a-1 ; y)$ we conclude

$$
G(a-1 ; y)=\frac{1}{a-1}\left[G(a ; y)-e^{-y} y^{a-1}\right]
$$

Replacing $a-1$ by a gives

$$
G(a ; y)=\frac{1}{a}\left[G(a+1 ; y)-e^{-y} y^{a}\right]
$$

as required.

