Stat 252 Winter 2007
Assignment \#2 Solutions

1. If the population mean is μ, then $\mathbb{E}\left(Y_{i}\right)=\mu, i=1, \ldots, n$. Hence,

$$
\mathbb{E}(\bar{Y})=\mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(Y_{i}\right)=\frac{n \cdot \mu}{n}=\mu
$$

(That is, \bar{Y} is an unbiased estimator of μ.) In order to show that S^{2} is an unbiased estimator of σ^{2}, we begin by expanding $\left(Y_{i}-\bar{Y}\right)^{2}=Y_{i}^{2}-2 Y_{i} \bar{Y}+\bar{Y}^{2}$. This gives

$$
\begin{aligned}
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}^{2}-2 Y_{i} \bar{Y}+\bar{Y}^{2}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-2 \bar{Y} \sum_{i=1}^{n} Y_{i}+\bar{Y}^{2} \sum_{i=1}^{n} 1\right) \\
& =\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-2 n \bar{Y}^{2}+n \bar{Y}^{2}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} Y_{i}^{2}-n \bar{Y}^{2}\right)
\end{aligned}
$$

where we used the fact that

$$
\sum_{i=1}^{n} Y_{i}=n \bar{Y}
$$

If the population variance is σ^{2}, then $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}, i=1, \ldots, n$, so that $\mathbb{E}\left(Y_{i}^{2}\right)=\operatorname{Var}\left(Y_{i}\right)+$ $\left(\mathbb{E}\left(Y_{i}\right)\right)^{2}=\sigma^{2}+\mu^{2}$. Hence,

$$
\begin{aligned}
\mathbb{E}\left(S^{2}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} \mathbb{E}\left(Y_{i}^{2}\right)-n \mathbb{E}\left(\bar{Y}^{2}\right)\right) & =\frac{1}{n-1}\left(\sum_{i=1}^{n}\left(\sigma^{2}+\mu^{2}\right)-n \mathbb{E}\left(\bar{Y}^{2}\right)\right) \\
& =\frac{1}{n-1}\left(n\left(\sigma^{2}+\mu^{2}\right)-n \mathbb{E}\left(\bar{Y}^{2}\right)\right) \\
& =\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}-\mathbb{E}\left(\bar{Y}^{2}\right)\right)
\end{aligned}
$$

However, we still must compute $\mathbb{E}\left(\bar{Y}^{2}\right)$. As above, $\mathbb{E}\left(\bar{Y}^{2}\right)=\operatorname{Var}(\bar{Y})+(\mathbb{E}(\bar{Y}))^{2}=\operatorname{Var}(\bar{Y})+\mu^{2}$ which leaves us with $\operatorname{Var}(\bar{Y})$ to compute. It is common to assume that the data were collected independently of each other; that is, if $i \neq j$, then $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0$. Therefore, from Theorem 5.12 (that's Stat 251 material)

$$
\begin{aligned}
\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)=\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right)+2 \sum_{1 \leq i<j \leq n} \sum_{i \leq n} \operatorname{Cov}\left(Y_{i}, Y_{j}\right)\right) & =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(Y_{i}\right) \\
& =\frac{n \cdot \sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Finally, we conclude that $\mathbb{E}\left(\bar{Y}^{2}\right)=\sigma^{2} / n+\mu^{2}$ so

$$
\mathbb{E}\left(S^{2}\right)=\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}-\mathbb{E}\left(\bar{Y}^{2}\right)\right)=\frac{n}{n-1}\left(\sigma^{2}+\mu^{2}-\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right)=\frac{n}{n-1} \cdot \frac{(n-1) \sigma^{2}}{n}=\sigma^{2}
$$

meaning that S^{2} is an unbiased estimator of σ^{2} as required.
2. Let Y denote the life time of a heat lamp in this greenhouse, so that $Y \sim \mathcal{N}(50,4)$ (in hours). If Y_{1}, \ldots, Y_{25} represent the 25 heat lamps for this medicinal herb growing operation, then we are interested in

$$
P\left(Y_{1}+\cdots+Y_{25}>1300\right) .
$$

Since the Y_{i} are assumed to be i.i.d. we can conclude that

$$
P\left(\frac{Y_{1}+\cdots+Y_{25}}{25}>\frac{1300}{25}\right)=P(\bar{Y}>52)
$$

where $\bar{Y} \sim \mathcal{N}(50,4 / 25)$. In order to calculate $P(\bar{Y}>52)$ we normalize and use Table 4 so that

$$
P(\bar{Y}>52)=P\left(\frac{\bar{Y}-50}{2 / 5}>\frac{52-50}{2 / 5}\right)=P(Z>5) \approx 0
$$

where $Z \sim N o(0,1)$. Hence, we see that

$$
P\left(Y_{1}+\cdots+Y_{25}>1300\right) \approx 0
$$

that is, it is extremely unlikely that there will be a bulb burning after 1300 hours.
3. If $Y_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$, then the moment generating function of Y_{1} is

$$
m_{Y_{1}}(t)=\exp \left\{\mu_{1} t+\frac{\sigma_{1}^{2} t}{2}\right\}
$$

and, similarly, if $Y_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$, then the moment generating function of Y_{2} is

$$
m_{Y_{2}}(t)=\exp \left\{\mu_{2} t+\frac{\sigma_{2}^{2} t}{2}\right\} .
$$

Therefore, the moment generating function of $Y_{1}+Y_{2}$ is given by

$$
m_{Y_{1}+Y_{2}}(t):=\mathbb{E}\left(e^{\left(Y_{1}+Y_{2}\right) t}\right)=\mathbb{E}\left(e^{Y_{1} t}\right) \cdot \mathbb{E}\left(e^{Y_{2} t}\right)
$$

since Y_{1} and Y_{2} are independent. Hence, we find

$$
\begin{aligned}
m_{Y_{1}+Y_{2}}(t)=\mathbb{E}\left(e^{Y_{1} t}\right) \cdot \mathbb{E}\left(e^{Y_{2} t}\right)=m_{Y_{1}}(t) \cdot m_{Y_{2}}(t) & =\exp \left\{\mu_{1} t+\frac{\sigma_{1}^{2} t}{2}\right\} \cdot \exp \left\{\mu_{2} t+\frac{\sigma_{2}^{2} t}{2}\right\} \\
& =\exp \left\{\left(\mu_{1}+\mu_{2}\right) t+\left(\frac{\sigma_{1}^{2}}{2}+\frac{\sigma_{2}^{2}}{2}\right) t\right\}
\end{aligned}
$$

which we recognize as the moment generating function of a normal random variable with mean $\mu_{1}+\mu_{2}$ and variance $\sigma_{1}^{2}+\sigma_{2}^{2}$. That is, we have shown $Y_{1}+Y_{2} \sim \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$ as required.
4. (a) Suppose that Y_{1}, \ldots, Y_{n} are i.i.d. $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variables. As proved on January 12, 2007,

$$
\bar{Y} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{\sqrt{n}}\right)
$$

so that normalizing we conclude

$$
\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0,1) .
$$

From the Theorem given on January 15, 2007, we know that the random variable

$$
\frac{(n-1) S^{2}}{\sigma^{2}}
$$

has a $\chi^{2}(n-1)$ distribution. It also follows from this theorem that \bar{Y} and S^{2} are independent. It now follows from the definition of the t distribution that if $Z \sim \mathcal{N}(0,1)$ and $W \sim \chi^{2}(\nu)$ are independent, then

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim t(\nu)
$$

Thus, let

$$
Z=\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}} \quad \text { and } \quad W=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

so that

$$
\frac{Z}{\sqrt{W / \nu}}=\frac{\frac{\bar{Y}-\mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1) S^{2}}{\sigma^{2}} /(n-1)}}=\frac{\bar{Y}-\mu}{S / \sqrt{n}} \sim t(n-1)
$$

as required.
4. (b) Similarly,

$$
\frac{(n-1) S_{1}^{2}}{\sigma_{1}^{2}} \sim \chi^{2}(n-1) \quad \text { and } \quad \frac{(m-1) S_{2}^{2}}{\sigma_{2}^{2}} \sim \chi^{2}(m-1)
$$

and, by assumption, S_{1} and S_{2} are independent. Hence, from the definition of the F distribution, we conclude that

$$
\frac{\frac{(n-1) S_{1}^{2}}{\sigma_{1}^{2}} /(n-1)}{\frac{(m-1) S_{2}^{2}}{\sigma_{2}^{2}} /(m-1)}=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F(n-1, m-1)
$$

5. Textbook

(7.38) Suppose that $W_{i}=X_{i}-Y_{i}$. Since $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are all independent and identically distributed, so too are $W_{1}, W_{2}, \ldots, W_{n}$. Thus we find $E\left(W_{i}\right)=E\left(X_{i}-Y_{i}\right)=$ $E\left(X_{i}\right)-E\left(Y_{i}\right)=\mu_{1}-\mu_{2}$ and

$$
\operatorname{Var}\left(W_{i}\right)=\operatorname{Var}\left(X_{i}-Y_{i}\right)=\operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(Y_{i}\right)-2 \operatorname{Cov}\left(X_{i}, Y_{i}\right)=\sigma_{1}^{2}+\sigma_{2}^{2}
$$

using Theorem 5.12 and the fact that $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=0$ since X_{i} and Y_{i} are independent. If

$$
\bar{W}=\frac{1}{n} \sum_{i=1}^{n} W_{i}
$$

then since the W_{i} are iid, we conclude

$$
E(\bar{W})=\mu_{1}-\mu_{2} \quad \text { and } \quad \operatorname{Var}(\bar{W})=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{n}
$$

Hence, we can now apply Theorem 7.4 to the normalized random variables

$$
U_{n}=\frac{\bar{W}-E(\bar{W})}{\sqrt{\operatorname{Var}(\bar{W})}}=\frac{\bar{W}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / n}}=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) / n}}
$$

and conclude that the distribution of U_{n} converges to $\mathcal{N}(0,1)$.
(7.40) Using the same notation as in (7.38), we find that if the sample sizes differ, then

$$
\operatorname{Var}(\bar{W})=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

Therefore, if

$$
U_{n}=\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}
$$

then U_{n} again converges in distribution to $\mathcal{N}(0,1)$. In order to compute the required probability, we simply normalize to obtain a random variable which is (approximately) a standard normal so that we can use Table 4. That is,

$$
\begin{aligned}
P\left(\left|(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)\right| \leq 0.05\right) & =P\left(\left|\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right| \leq \frac{0.05}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\right) \\
& =P\left(\left|\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{0.01}{50}+\frac{0.02}{100}}}\right| \leq \frac{0.05}{\sqrt{\frac{0.01}{50}+\frac{0.02}{100}}}\right) \\
& \approx P(|Z| \leq 2.5) \\
& \approx 1-2(0.0062)=0.9876
\end{aligned}
$$

where $Z \sim \mathcal{N}(0,1)$.
(7.41) If $n_{1}=n_{2}=n$, then we are trying to find the value of n such that

$$
P\left(\left|(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)\right| \leq 0.04\right)=0.90
$$

Now, if we normalize (and write $Z \sim \mathcal{N}(0,1)$), then we obtain

$$
P\left(|Z| \leq \frac{0.04}{\sqrt{\frac{0.01}{n}+\frac{0.02}{n}}}\right)=0.90
$$

But from Table 4 we find that $P(|Z| \leq 1.645) \approx 0.90$, which implies that

$$
\frac{0.04}{\sqrt{\frac{0.01}{n}+\frac{0.02}{n}}} \approx 1.645
$$

Solving for n gives $n \approx 50.74$. Thus, we need each sample to contain at least 51 data points.

6. Textbook

(6.64) If $Y_{1}, Y_{2}, \ldots, Y_{n}$ are all independent and identically distributed beta(2,2) random variables, then each has density function

$$
f_{Y}(y)=\frac{\Gamma(4)}{\Gamma(2) \Gamma(2)} y(1-y)=6 y(1-y), \quad 0<y<1
$$

(a) If $Y_{(n)}=\max \left\{Y_{1}, \ldots, Y_{n}\right\}$, then

$$
P\left(Y_{(n)} \leq t\right)=P\left(Y_{1} \leq t, \ldots, Y_{n} \leq t\right)=P\left(Y_{1} \leq t\right) \cdots P\left(Y_{n} \leq t\right)=\left[P\left(Y_{1} \leq t\right)\right]^{n}
$$

since the Y_{i} are independent (the second equality) and identically distributed (the third equality). Now, for any $0<t<1$,
$P\left(Y_{1} \leq t\right)=\int_{0}^{t} f_{Y}(y) d y=\int_{0}^{t} 6 y(1-y) d t=\int_{0}^{t} 6 y d y-\int_{0}^{t} 6 y^{2} d y=3 t^{2}-2 t^{3}=t^{2}(3-2 t)$
so that the distribution function of $Y_{(n)}$ is

$$
F(t)=\left[P\left(Y_{(n)} \leq t\right)\right]^{n}=t^{2 n}(3-2 t)^{n}, \quad 0<t<1
$$

(Of course, $F(t)=0$ for $t \leq 0$, and $F(t)=1$ for $t \geq 1$.
(b) The density function of $Y_{(n)}$ is therefore
$f(t)=\frac{d}{d t} F(t)=\frac{d}{d t} t^{2 n}(3-2 t)^{n}=2 n t^{2 n-1}(3-2 t)^{n}-2 n t^{2 n}(3-2 t)^{n-1}=6 n t^{2 n-1}(3-2 t)^{n-1}(1-t)$
for $0<t<1$ and 0 otherwise.
(c) For $n=2$, the expected value $E\left(Y_{(2)}\right)$ is

$$
E\left(Y_{(2)}\right)=\int_{0}^{1} t f(t) d t=\int_{0}^{1} 12 t^{4}(3-2 t)(1-t) d t=\int_{0}^{1}\left(36 t^{4}-60 t^{5}+24 t^{6}\right) d t=\frac{36}{5}-\frac{60}{6}+\frac{24}{7}=\frac{22}{35}
$$

(6.65) If $Y_{1}, Y_{2}, \ldots, Y_{n}$ are all independent and identically distributed exponential (β) random variables, then each has density function

$$
f_{Y}(y)=\frac{1}{\beta} e^{-y / \beta}, \quad 0<y<\infty
$$

(a) If $Y_{(1)}=\min \left\{Y_{1}, \ldots, Y_{n}\right\}$, then

$$
P\left(Y_{(1)}>t\right)=P\left(Y_{1}>t, \ldots, Y_{n}>t\right)=P\left(Y_{1}>t\right) \cdots P\left(Y_{n}>t\right)=\left[P\left(Y_{1}>t\right)\right]^{n}
$$

since the Y_{i} are independent (the second equality) and identically distributed (the third equality). Now, for any $0<t<\infty$,

$$
P\left(Y_{1}>t\right)=\int_{t}^{\infty} f_{Y}(y) d y=\frac{1}{\beta} \int_{t}^{\infty} e^{-y / \beta} d y=e^{-t / \beta}
$$

so that

$$
P\left(Y_{(1)}>t\right)=e^{-t n / \beta}
$$

Thus, the distribution function of $Y_{(n)}$ is

$$
F(t)=P\left(Y_{(1)} \leq t\right)=1-P\left(Y_{(1)}>t\right)=1-e^{-t n / \beta}=1-e^{-t /(\beta / n)}
$$

which is the distribution function of an exponential random variable with mean β / n.
(b) If $n=5, \beta=2$, then the distribution function of $Y_{(1)}$ is

$$
F(t)=1-e^{-5 t / 2}, \quad 0<t<\infty
$$

so that the corresponding density function is

$$
f(t)=\frac{5}{2} e^{-5 t / 2}, \quad 0<t<\infty .
$$

Hence,

$$
P\left(Y_{(1)} \leq 3.6\right)=\frac{5}{2} \int_{0}^{3.6} e^{-5 t / 2} d t=-\left.e^{-5 t / 2}\right|_{0} ^{3.6}=1-e^{-9}
$$

