4. Review of Stat 251 Handout

(3.3) It is a simple matter to compute:

- $\mathbb{E}(X)=1 \cdot P(X=1)+0 \cdot P(X=0)=1 \cdot p+0 \cdot(1-p)=p ;$
- $\mathbb{E}\left(X^{2}\right)=1^{2} \cdot P(X=1)+0^{2} \cdot P(X=0)=1^{2} \cdot p+0^{2} \cdot(1-p)=p ;$
- $\mathbb{E}\left(e^{\theta X}\right)=e^{\theta \cdot 1} P(X=1)+e^{\theta \cdot 0} P(X=0)=e^{\theta} \cdot p+1 \cdot(1-p)=1-p\left(1-e^{\theta}\right)$.
(3.4) In order to solve this problem, we will need to compute several integrals. Since the density function for any random variable integrates to 1 , we have

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=1
$$

After substituting $u=y^{2} / 2$, and carefully handling the infinite limits of integrations, we find

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y e^{-y^{2} / 2} d y=0
$$

Finally, using parts with $u=y, d v=y e^{-y^{2} / 2} d y$, and carefully handling the infinite limits of integration,

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{2} e^{-y^{2} / 2} d y=1
$$

In fact, it is also straightforward to show that for $n=1,2,3,4,5,6, \ldots$,

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{n} e^{-y^{2} / 2} d y=(n-1) \cdot(n-3) \cdot(n-5) \cdots 3 \cdot 1 \cdot\left(\frac{1+(-1)^{n}}{2}\right)
$$

As for the expected moments, we apply the Law of the Unconscious Statistician.

- By definition,

$$
\mathbb{E}(X)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} x e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Substituting $y=\frac{x-\mu}{\sigma}$ so that $x=\sigma y+\mu, \sigma d y=d x$ transforms the integral into

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(\sigma y+\mu) e^{-y^{2} / 2} d y & =\sigma \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y e^{-y^{2} / 2} d y+\mu \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y \\
& =\sigma \cdot 0+\mu \cdot 1=\mu
\end{aligned}
$$

using the integrals above.

- By definition,

$$
\mathbb{E}\left(X^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

Substituting $y=\frac{x-\mu}{\sigma}$ so that $x=\sigma y+\mu, \sigma d y=d x$ transforms the integral into

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(\sigma y+\mu)^{2} e^{-y^{2} / 2} d y=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\sigma^{2} y^{2}+2 \sigma \mu y+\mu^{2}\right) e^{-y^{2} / 2} d y
$$

As in the previous part, splitting up the integral into the three separate pieces, and using the integrals computed above, we find

$$
\mathbb{E}\left(X^{2}\right)=\sigma^{2} \cdot 1+2 \sigma \mu \cdot 0+\mu^{2} \cdot 1=\sigma^{2}+\mu^{2}
$$

- By definition,

$$
\mathbb{E}\left(e^{\theta X}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\theta x} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
$$

The first step is to combine and simplify the integrand, namely

$$
\begin{aligned}
e^{\theta x} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=\exp \left(\theta x-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) & =\exp \left(\frac{\theta^{2} \sigma^{4}+2 \mu \theta \sigma^{2}-\left(x-\theta \sigma^{2}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& =\exp \left(\mu \theta+\frac{\theta \sigma^{2}}{2}\right) \exp \left(\frac{-\left(x-\theta \sigma^{2}-\mu\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where the last equality was obtained by completing the square. Substituting this back into the original integral gives

$$
\mathbb{E}\left(e^{\theta X}\right)=\exp \left(\mu \theta+\frac{\theta \sigma^{2}}{2}\right) \cdot \frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(x-\theta \sigma^{2}-\mu\right)^{2}}{2 \sigma^{2}}\right) d x
$$

To compute this final integral we make the substitution $y=\frac{x-\theta \sigma^{2}-\mu}{\sigma}$ so that $\sigma d y=d x$. This gives

$$
\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(\frac{-\left(x-\theta \sigma^{2}-\mu\right)^{2}}{2 \sigma^{2}}\right) d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-y^{2} / 2} d y=1
$$

so that

$$
\mathbb{E}\left(e^{\theta X}\right)=\exp \left(\mu \theta+\frac{\theta \sigma^{2}}{2}\right)
$$

(4.2) If the density of X is

$$
f(x)=\frac{1}{\pi} \cdot \frac{1}{1+x^{2}}
$$

then

$$
\mathbb{E}(|X|)=\int_{-\infty}^{\infty}|x| f(x) d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{|x|}{1+x^{2}} d x=\frac{1}{\pi} \int_{0}^{\infty} \frac{x}{1+x^{2}} d x
$$

where the last equality follows since the integrand is even. Now, we must be extra careful with the improper integral:
$\int_{0}^{\infty} \frac{x}{1+x^{2}} d x=\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{x}{1+x^{2}} d x=\lim _{N \rightarrow \infty} \int_{1}^{1+N^{2}} \frac{1}{2 u} d u=\lim _{N \rightarrow \infty} \frac{1}{2}\left(\ln \left|1+N^{2}\right|-\ln |1|\right)=\infty$.
Thus, $X \notin L^{1}$.
(4.12) If X and Y are independent, then $\mathbb{E}(X Y)=\mathbb{E}(X) \mathbb{E}(Y)$. Hence,

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=0
$$

so that X and Y are uncorrelated.

- We find the density of Y simply using the Law of Total Probability:

$$
\begin{aligned}
& P(Y=0) \\
& \quad=P(Y=0 \mid X=1) P(X=1)+P(Y=0 \mid X=0) P(X=0)+P(Y=0 \mid X=-1) P(X=-1) \\
& \quad=0 \cdot 1 / 4+1 \cdot 1 / 2+0 \cdot 1 / 4 \\
& \quad=1 / 2 \\
& P(Y=1) \\
& \quad=P(Y=1 \mid X=1) P(X=1)+P(Y=1 \mid X=0) P(X=0)+P(Y=1 \mid X=-1) P(X=-1) \\
& \quad=1 \cdot 1 / 4+0 \cdot 1 / 2+1 \cdot 1 / 4 \\
& \quad=1 / 2
\end{aligned}
$$

- The joint density of (X, Y) is given by

$$
\begin{aligned}
& P(X=0, Y=0)=P(Y=0 \mid X=0) P(X=0)=1 \cdot 1 / 2=1 / 2 \\
& P(X=0, Y=1)=P(Y=1 \mid X=0) P(X=0)=0 \cdot 1 / 2=0 \\
& P(X=1, Y=0)=P(Y=0 \mid X=1) P(X=1)=0 \cdot 1 / 4=0 \\
& P(X=1, Y=1)=P(Y=1 \mid X=1) P(X=1)=1 \cdot 1 / 4=1 / 4 \\
& P(X=-1, Y=0)=P(Y=0 \mid X=-1) P(X=-1)=0 \cdot 1 / 4=0 \\
& P(X=-1, Y=1)=P(Y=1 \mid X=-1) P(X=-1)=1 \cdot 1 / 4=1 / 4 .
\end{aligned}
$$

Since, for example, $P(X=0, Y=0)=1 / 2$, but $P(X=0) P(Y=0)=1 / 2 \cdot 1 / 2=1 / 4$, we see that X and Y cannot be independent.

- The possible values of $X Y$ are $0,1,-1$. Hence,

$$
P(X Y=0)=P(X=0, Y=0)=1 / 2
$$

and

$$
P(X Y=1)=P(X=1, Y=1)=1 / 4
$$

using the computations above. By the law of total probability,

$$
P(X Y=-1)=1 / 4
$$

(Equivalently, $P(X Y=-1)=P(X=-1, Y=1)=1 / 4$.) Thus,

$$
\mathbb{E}(X Y)=0 \cdot P(X Y=0)+1 \cdot P(X Y=1)+(-1) \cdot P(X Y=-1)=0+1 / 4-1 / 4=0
$$

Since $\mathbb{E}(X)=0$ and $\mathbb{E}(Y)=0$, we see that

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=0-0=0
$$

whence X and Y are uncorrelated.

5. Textbook

(1.1(c)) Briefly: The parameter of interest is the weekly water consumption for single-family dwelling units in the city. The population, obviously, consists of all single-family dwelling units in the city. The inferential objective of the city engineer is to determine the average weekly water consumption for single-family dwelling units in the city This can be done by collecting a random sample from among all single-family dwelling units in the city, and either constructing a confidence interval or conducting a hypothesis test. As city engineer, it should be relatively straightforward to obtain a map of city water lines, and the locations of all single-family dwellings that receive city water. Note, however, that he may not have access to their names.
(1.5(c)) Reading the histogram, we find that ehe proportion of students who had GPAs less that 2.65 is

$$
\frac{3}{30}+\frac{3}{30}+\frac{3}{30}+\frac{7}{30}=\frac{16}{30}
$$

(1.9) By definition,

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \text { where } \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

Notice that $\left(y_{i}-\bar{y}\right)^{2}=y_{i}^{2}-2 \bar{y} y_{i}+\bar{y}^{2}$. Thus,

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\sum_{i=1}^{n} y_{i}^{2}+\sum_{i=1}^{n}(-2) \bar{y} y_{i}+\sum_{i=1}^{n} \bar{y}^{2}(\text { using } \mathrm{c}) \\
& =\sum_{i=1}^{n} y_{i}^{2}-2 \bar{y} \sum_{i=1}^{n} y_{i}+\sum_{i=1}^{n} \bar{y}^{2}(\text { using a }) \\
& =\sum_{i=1}^{n} y_{i}^{2}-2 \bar{y} \sum_{i=1}^{n} y_{i}+n \bar{y}^{2}(\text { using b) }
\end{aligned}
$$

But,

$$
\sum_{i=1}^{n} y_{i}=n \bar{y}
$$

so we can substitute that into the above to conclude

$$
\sum_{i=1}^{n} y_{i}^{2}-2 \bar{y} \sum_{i=1}^{n} y_{i}+n \bar{y}^{2}=\sum_{i=1}^{n} y_{i}^{2}-2 n \bar{y}^{2}+n \bar{y}^{2}=\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}
$$

Substituting back into this for \bar{y} gives

$$
s^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}\right]=\frac{1}{n-1}\left[\sum_{i=1}^{n} y_{i}^{2}-n\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right)^{2}\right]=\frac{1}{n-1}\left[\sum_{i=1}^{n} y_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} y_{i}\right)^{2}\right]
$$

(1.10) If our data consists of $\{1,4,2,1,3,3\}$, then we trivially compute

$$
\sum_{i=1}^{6} y_{i}=1+4+2+1+3+3=14
$$

and

$$
\sum_{i=1}^{6} y_{i}^{2}=1^{2}+4^{2}+2^{2}+1^{2}+3^{2}+3^{2}=40
$$

Thus,

$$
s^{2}=\frac{1}{6-1}\left[\sum_{i=1}^{6} y_{i}^{2}-\frac{1}{6}\left(\sum_{i=1}^{6} y_{i}\right)^{2}\right]=\frac{1}{5}\left[40-\frac{1}{6} \cdot 14^{2}\right]=\frac{22}{15}
$$

Note that writing garbage with decimals is unacceptable here!
(1.30) Suppose that there is a set of n measurements, namely $y_{1}, y_{2}, \ldots, y_{n}$. For each measurement, calculate $\left|y_{i}-\bar{y}\right|$ and determine whether or not $\left|y_{i}-\bar{y}\right| \geq k s$ for a given $k>1$. Thus, we can write

$$
\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}=\left\{y_{i}:\left|y_{i}-\bar{y}\right| \geq k s\right\} \cup\left\{y_{i}:\left|y_{i}-\bar{y}\right|<k s\right\}
$$

Suppose that there are n^{\prime} of the measurements for which $\left|y_{i}-\bar{y}\right| \geq k s$. (Note that $0 \leq n^{\prime} \leq n$.) This means that $n-n^{\prime}$ of the measurements fall within $k s$ of the mean, so that the fraction of the measurements which do so is

$$
\frac{n-n^{\prime}}{n}=1-\frac{n^{\prime}}{n}
$$

Our goal, therefore, is to show

$$
1-\frac{n^{\prime}}{n} \geq 1-\frac{1}{k^{2}}
$$

Suppose that

$$
A=\left\{y_{i}:\left|y_{i}-\bar{y}\right| \geq k s\right\} \quad \text { and } \quad B=\left\{y_{i}:\left|y_{i}-\bar{y}\right|<k s\right\}
$$

Hence,

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{n-1}\left(\sum_{A}\left(y_{i}-\bar{y}\right)^{2}+\sum_{B}\left(y_{i}-\bar{y}\right)^{2}\right) \geq \frac{1}{n-1} \sum_{A} k^{2} s^{2}=\frac{n^{\prime} k^{2} s^{2}}{n-1}
$$

The first inequality follows since $\sum_{B}\left(y_{i}-\bar{y}\right)^{2} \geq 0$ and since $\left(y_{i}-\bar{y}\right)^{2} \geq k^{2} s^{2}$ if $y_{i} \in A$. (Note that there are n^{\prime} points in A.) Therefore, we conclude

$$
s^{2} \geq \frac{n^{\prime} k^{2} s^{2}}{n-1}
$$

Smplifying gives

$$
1 \geq \frac{n^{\prime} k^{2}}{n-1} \quad \text { which implies } \quad \frac{1}{k^{2}} \geq \frac{n^{\prime}}{n-1} .
$$

But, notice that $n^{\prime} /(n-1) \geq n^{\prime} / n$. Therefore, $1 / k^{2} \geq n^{\prime} / n$ which implies the result.
(1.33) Briefly: Lead content readings must be non-negative. Since 0 is only 0.33 standard deviations below the mean, the population can only extend 0.33 standard deviations below the mean. This radically skews the distribution so that it cannot be normal. (If this is unclear, draw a picture.)

Stat 151 Review Problems

6. (a) Let X denote the size of an adult male's foot so that X is normally distributed with mean 25 and standard deviation 3. Therefore,

$$
P(22<X<28)=P\left(\frac{22-25}{3}<\frac{X-25}{3}<\frac{28-25}{3}\right)=P(-1<Z<1) \approx 0.6826
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from Table 4 .
6. (b) If \bar{X} denotes the average size of an adult male's foot, then X is normally distributed with mean 25 and standard deviation $3 / \sqrt{100}=0.3$. Therefore,

$$
P(24.7<\bar{X}<25.3)=P\left(\frac{24.7-25}{0.3}<\frac{\bar{X}-25}{0.3}<\frac{25.3-25}{0.3}\right)=P(-1<Z<1) \approx 0.6826
$$

where $Z \sim \mathcal{N}(0,1)$ and the last equality follows from Table 4 as in (a) above.
7. (a) Write the values in order: $150,180,190,230,250,250,280,300,340,380$. The median is just the mean of the two middle numbers. Since these two numbers are both 250 , the median is 250 . The mean is a simple calculation: $(150+180+190+230+250+250+280+300+340+$ $380) / 10=255$. The standard deviation is calculated just as easily:

$$
\sqrt{\frac{697300-\frac{2550^{2}}{10}}{9}} \approx 72
$$

7. (b) For the Bright Idea Lighting Company, we have

$$
P(X>350)=P\left(Z>\frac{350-262}{41}\right) \approx P(Z>2.15) \approx 0.0158
$$

and for The Electric Company,

$$
P(X>350) \approx P\left(Z>\frac{350-255}{72}\right) \approx P(Z>1.32) \approx 0.0934
$$

where in both cases $Z \sim \mathcal{N}(0,1)$ and using Table 4.
7. (c) An approximate 95% confidence interval for the true mean lifetime of The Electric Company's light bulbs is given by

$$
\bar{X} \pm t_{0.025, n-1} \frac{S}{\sqrt{n}} \quad \text { or } \quad 255 \pm 2.262 \frac{72}{\sqrt{10}} \quad \text { or } \quad(204,307)
$$

7. (d) Since the mean lifetime of Bright Idea Lighting light bulbs is 262 , and since 262 lies in the 95% confidence interval constructed in (c), we conclude that there is no significant difference in mean lifetimes for these two companies' light blubs.
8. Let μ_{1} denote the mean waiting time for Cheap- O-Lube customers last year, and let μ_{2} denote the mean waiting time for Cheap-O-Lube customers this year. We are interested in testing the hypotheses

$$
H_{0}: \mu_{1}-\mu_{2} \leq 0 \quad \text { vs. } \quad H_{1}: \mu_{1}-\mu_{2}>0 .
$$

Since there are over 30 data points in each sample, we use a two sample z-test. Thus, our test statistic is

$$
Z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}=\frac{4.5-3.5}{\sqrt{\frac{1^{2}}{200}+\frac{1^{2}}{180}}} \approx 9.73
$$

From Table 5, the critical value corresponding to $\alpha=0.05$ is 1.645 . Since $9.73>1.645$ we reject H_{0} and conclude that there is overwhelming evidence to suggest that Cheap-O-Lube customers are waiting less this year.

