This assignment is due at the beginning of class on Wednesday, April 4, 2007. You must submit all problems that are marked with an asterix $\left({ }^{*}\right)$.

1. ${ }^{*}$ Let $Y \sim \operatorname{Exp}(\theta)$. Determine the rejection region of the most powerful significance level α test of $H_{0}: \theta=1$ against $H_{A}: \theta=1 / 2$. (Hint: Construct the likelihood ratio test.)
2. * Suppose that Y_{1}, \ldots, Y_{n} are independent and identically distributed with density function

$$
f(y \mid \theta)=\theta \exp (-\theta y)
$$

where $y>0$ and $\theta>0$. As usual, let \bar{Y} denote the sample mean given by

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

It is known that the maximum likelihood estimator of θ is $\hat{\theta}_{\text {MLE }}=1 / \bar{Y}$.
(a) Consider testing $H_{0}: \theta=\theta_{0}$ against $H_{A}: \theta \neq \theta_{0}$. Verify that the rejection region for the generalized likelihood ratio test of these hypotheses is of the form

$$
\left\{\bar{Y} \exp \left(-\theta_{0} \bar{Y}\right) \leq C\right\}
$$

for some suitable constant C.
(b) Suppose, to be specific, that $\theta_{0}=1$, and that a random sample of size $n=10$ is conducted. If the observed data yield $\bar{Y}=1.25$, perform the generalized likelihood ratio test at the approximate significance level $\alpha=0.10$.
3. * Suppose that Y_{1}, \ldots, Y_{n} are independent and identically distributed with density function

$$
f(y \mid \theta)=\theta^{2} y \exp (-\theta y)
$$

where $y>0$ and $\theta>0$. As usual, let \bar{Y} denote the sample mean given by

$$
\bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

It is known that the maximum likelihood estimator of θ is $\hat{\theta}_{\mathrm{MLE}}=2 / \bar{Y}$.
(a) Consider testing $H_{0}: \theta=1$ against $H_{A}: \theta \neq 1$. Verify that the generalized likelihood ratio for this hypothesis testing problem is

$$
\Lambda=\left(\frac{\bar{Y}}{2}\right)^{2 n} \exp (2 n-n \bar{Y})
$$

(b) Suppose that a random sample of size $n=5$ is conducted and the observed data yield $\bar{Y}=1.0$. Perform the generalized likelihood ratio test at the approximate significance level $\alpha=0.05$.

