This assignment is due at the beginning of class on Monday, January 22, 2007. You must submit all problems that are marked with an asterix $\left({ }^{*}\right)$.

1. Show that if $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ and variance σ^{2}, then

$$
S^{2}:=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

is an unbiased estimator of σ^{2}. This illustrates one reason for dividing by $n-1$ in the definition of the sample variance S^{2}, instead of dividing by (the more natural) n.
2. * A medicinal herb growing operation maintains a generator to power 25 heat lamps in its greenhouse so that when one lamp fails, another immediately takes over. (Only one lamp is lit at a time.) The heat lamps operate independently, and each has a lifetime which is normally distributed as $\mathcal{N}(50,4)$ (in hours). If the greenhouse is not checked for 1300 hours after the generator is turned on, what is the probability that a lamp will be burning at the end of the 1300 -hour period?
3. $\quad *$ Suppose that $Y_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ are independent. Using moment generating functions, show that the distribution of the statistic $Y_{1}+Y_{2}$ is $\mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
4. * Each of the following two problems can be solved using an appropriate theorem and definition from the lecture of January 15, 2007.
(a) Suppose that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are i.i.d. normal random variables with common mean μ and common variance σ^{2}. Show that the random variable

$$
\frac{\bar{Y}-\mu}{S / \sqrt{n}}
$$

has a t distribution with $n-1$ degrees of freedom.
(b) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. normal random variables with common mean μ_{1} and common variance σ_{1}^{2}. Suppose further that $Y_{1}, Y_{2}, \ldots, Y_{m}$ are i.i.d. normal random variables with common mean μ_{2} and common variance σ_{2}^{2}, and that the X_{i} are independent of the Y_{j}. If

$$
S_{1}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \quad \text { and } \quad S_{2}^{2}=\frac{1}{m-1} \sum_{i=1}^{m}\left(Y_{i}-\bar{Y}\right)^{2}
$$

then show that

$$
\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}
$$

has an F distribution with $(n-1)$ numerator degrees of freedom, and $(m-1)$ denominator degrees of freedom.
5. Do the following exercises from Wackerly, et al.

- page $351 \# 7.38$
- page $352 \# 7.40$
- page $352 \# 7.41$

6. Do the following exercises from Wackerly, et al.

- page $323 \# 6.64$
- page $324 \# 6.65$

