
Statistics 252 “Practice Exam” (Solutions) – Winter 2006

1. Let U = θ2Y so that for u > 0,

P (U ≤ u) = P (Y ≤ θ−2u) =
∫ θ−2u

0
θ2e−θ2y dy = 1− e−u.

Thus, we must find a and b so that∫ a

0
e−u du = α1 and

∫ ∞
b

e−u du = α2.

Computing the integrals we find a = − log(1− α1) and b = − log(α2). Hence,

1− (α1 + α2) = P (a ≤ U ≤ b) = P (− log(1− α1) ≤ θ2Y ≤ − log(α2))

= P

(
− log(1− α1)

Y
≤ θ2 ≤ − log(α2)

Y

)
= P

(√
− log(1− α1)

Y
≤ θ ≤

√
− log(α2)

Y

)
.

In other words, (√
− log(1− α1)

Y
,

√
− log(α2)

Y

)
is a confidence interval for θ with coverage probability 1− (α1 + α2).

2. (a) If Y ∼ Unif(0, θ), then since E(Y ) = θ/2 we find that setting E(Y ) = Y gives

θ̂MOM = 2Y .

Since
E(θ̂MOM) = 2E(Y ) = 2E(Y1) = 2 · θ

2
= θ

we conclude that θ̂MOM is an unbiased estimator of θ.

(b) In order to find E(Y(10)) we must find the density function of Y(10). Now,

P (Y(10) ≤ t) =
[∫ t

0
θ−1 dy

]10

=
t10

θ10
, 0 ≤ t ≤ θ

so that f(t) = 10 θ−10 t9, 0 ≤ t ≤ θ. Thus,

E(Y(10)) =
∫ θ

0
10 θ−10 t10 dt =

10
11

θ.

An unbiased estimator of θ which is a multiple of Y(10) is therefore given by

θ̂B =
11
10

max(Y1, . . . , Y10).

Also, note that

E(Y 2
(10)) =

∫ θ

0
10 θ−10 t11 dt =

10
12

θ2.



(c) From (a), we conclude

Var(θ̂MOM) = 4 Var(Y ) =
4
10

Var(Y1) =
4θ2

10 · 12
=

θ2

30
.

From (b), we conclude

Var(θ̂B) =
121
100

Var(max(Y1, . . . , Y10)) =
121
100

(
10
12

− 100
121

)
θ2 =

θ2

120
.

Thus,

eff(θ̂MOM, θ̂B) =
Var(θ̂B)

Var(θ̂MOM)
=

1
4
.

Both θ̂MOM and θ̂B are unbiased so we prefer the one with the smaller variance, namely θ̂B.

3. (a) Suppose that θ̂ is an estimator of θ. The random interval [L(θ̂), U(θ̂)] is a 93% confidence
interval for θ if

P (L(θ̂) ≤ θ ≤ U(θ̂)) = 0.93.

Hence, we interpret a 93% confidence interval to mean that before the data have been ob-
served, there is a 93% chance that the parameter will lie in the random interval. However,
once the data have been observed, no such probability statement is true. Either the given
interval does or does not contain θ. Alternatively, if many, many intervals are observed, each
constructed using the same formula, then the long-run average that will contain θ is 0.93.

(b) It is desirable to find unbiased estimators because by having an unbiased estimator we know
E(θ̂) = θ; that is, the most likely “value” of θ̂ is θ. If we have the unbiased estimator with
the smallest variance, then the distribution of θ̂ is clustered as tightly as possible about θ.
Thus, the MVUE is the “most likely” of all unbiased estimators to be “closest” to θ.

4. (a) Since

log f(y|θ) = log(y)− 2 log(θ)− y2

2θ2
,

we find
∂2

∂θ2
log f(y|θ) =

2
θ2

− 3y2

θ4
.

Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
=

3E(Y 2)
θ4

− 2
θ2

=
4
θ2

.

(b) To find θ̂MOM we solve the equation E(Y ) = Y for θ. This implies

θ̂MOM =

√
2
π

Y .

(c)

Var(θ̂MOM) =
2
π

VarY =
2

nπ
VarY1 =

2
nπ

(
E(Y 2

1 )− [E(Y1)]2
)

=
2

nπ

(
2− π

2

)
θ2

=
(

4− π

nπ

)
θ2



5. (a) We find that
E(Y ) = E(Y1) = 252 θ.

Thus, if

θ̂A =
Y

252
=

1
252n

n∑
i=1

Yi

then θ̂A is an unbiased estimator of θ.

(b) Since
log f(y|θ) = −252 log(θ)− log(251!) + 251 log(y)− y

θ
,

we find
∂2

∂θ2
log f(y|θ) =

252
θ2

− 2y

θ3
.

Thus,

I(θ) = −E
(

∂2

∂θ2
log f(Y |θ)

)
= −252

θ2
+

2E(Y )
θ3

=
252
θ2

.

(c) The Cramer-Rao inequality tells us that an unbiased estimator θ̂ of θ must satisfy

Var(θ̂) ≥ 1
nI(θ)

=
θ2

252n
.

Since

Var(θ̂A) =
1

2522n
VarY1 =

1
2522

· (252 θ2) =
θ2

252n
,

we have found an unbiased estimator whose variance attains the lower bound of the Cramer-
Rao inequality. Hence, θ̂A must be the MVUE of θ.


