Assignment \#9 Solutions

1. (a) If $\beta=P$ (Type II error), then we define the power of a test to be

$$
\text { power }=1-\beta=1-P_{H_{A}}\left(\text { accept } H_{0}\right)=P_{H_{A}}\left(\text { reject } H_{0}\right) .
$$

Now, with the alternative given, we reject H_{0} if

$$
Z=\frac{\bar{Y}-\mu_{0}}{\sigma / \sqrt{n}}>1.65,
$$

or, equivalently, if

$$
\bar{Y}>\sigma / \sqrt{n} \cdot 1.65+\mu_{0}
$$

where $\bar{Y} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$. Hence, we conclude that

$$
\text { power }=P_{H_{A}}\left(\bar{Y}>\sigma / \sqrt{n} \cdot 1.65+\mu_{0}\right) .
$$

Finally, if $\mu_{0}=0, \sigma^{2}=25, n=4$, then

- $\mu=1$:

$$
\text { power }=P_{\mu=1}(\bar{Y}>4.125)=P\left(\frac{\bar{Y}-1}{5 / 2}>\frac{4.125-1}{5 / 2}\right)=0.1056
$$

- $\mu=2$:

$$
\text { power }=P_{\mu=2}(\bar{Y}>4.125)=P\left(\frac{\bar{Y}-2}{5 / 2}>\frac{4.125-2}{5 / 2}\right)=0.1977 ;
$$

- $\mu=3$:

$$
\text { power }=P_{\mu=3}(\bar{Y}>4.125)=P\left(\frac{\bar{Y}-3}{5 / 2}>\frac{4.125-3}{5 / 2}\right)=0.3264 ;
$$

where all calculations were made using Table 4 . Notice that as μ gets farther away from 0 , the probability of a correct decision increases; it becomes easier to distinguish between the null and alternative.
(b) By mimicking the computations above, if

$$
\text { power }=P_{H_{A}}\left(\bar{Y}>\sigma / \sqrt{n} \cdot 1.65+\mu_{0}\right),
$$

where $\mu_{0}=0, \sigma^{2}=25, n=16$, then

- $\mu=1$:

$$
\text { power }=P\left(\frac{\bar{Y}-1}{5 / 4}>\frac{2.0625-1}{5 / 4}\right)=0.1977 ;
$$

- $\mu=2$:

$$
\text { power }=P\left(\frac{\bar{Y}-2}{5 / 4}>\frac{2.0625-2}{5 / 4}\right)=0.4801 ;
$$

- $\mu=3$:

$$
\text { power }=P\left(\frac{\bar{Y}-3}{5 / 4}>\frac{2.0625-3}{5 / 4}\right)=0.7734 .
$$

The reason that the power is significantly higher in (b) arises from the fact that as the sample size increases, the variance of \bar{Y} decreases. (That is, larger n yields less variance.) Thus, again, as μ gets farther away from 0 , the probability of a correct decision increases; it becomes easier to distinguish between the null and alternative. For a fixed H_{A}, by increasing n (so that there is more data), it becomes easier to detect that H_{0} is false.
2. (a) If this test is to have significance level 0.1 , then

$$
P_{H_{0}}\left(\text { reject } H_{0}\right)=P_{\sigma=1}\left(S^{2}>c\right)=0.1
$$

Since $\sigma=1$ under H_{0} so that $9 S^{2}$ has a χ^{2} distribution with $d f=9$, we must find c so that

$$
P\left(9 S^{2}>9 c\right)=0.1
$$

Using the table we find that for $\alpha=0.10$, the appropriate critical value is $\chi_{\alpha}^{2}=14.68$. Thus, we find $9 c=14.68$ so that $c=14.68 / 9 \approx 1.63$.
(b) Refer to problem $\# \mathbf{1}$ where it is shown in detail that

$$
\text { power }=P_{H_{A}}\left(\text { reject } H_{0}\right)
$$

As in part (a), we find

$$
\text { power }=P_{H_{A}}\left(S^{2}>1.63\right)=P_{H_{A}}\left(\frac{9 S^{2}}{\sigma^{2}}>\frac{14.68}{\sigma^{2}}\right)
$$

where

$$
\frac{9 S^{2}}{\sigma^{2}} \sim \chi_{9}^{2}
$$

for any σ^{2}. Thus,

- $\sigma^{2}=2$:

$$
\text { power }=P_{\sigma^{2}=2}\left(S^{2}>1.63\right)=P\left(\frac{9 S^{2}}{2}>\frac{14.68}{2}\right) \approx 0.60
$$

- $\sigma^{2}=3$:

$$
\text { power }=P_{\sigma^{2}=3}\left(S^{2}>1.63\right)=P\left(\frac{9 S^{2}}{3}>\frac{14.68}{3}\right) \approx 0.85
$$

where all calculations were made to the accuracy permitted by the table attached to the assignment.
3. As always, $\alpha=P_{H_{0}}\left(\right.$ reject $\left.H_{0}\right)$ and $\beta=P_{H_{A}}\left(\right.$ accept $\left.H_{0}\right)$. Since X has an Exponential (λ) distribution so that $f(x \mid \lambda)=\lambda^{-1} e^{-x / \lambda}$, and since our rejection region is $\{X<c\}$, we find that

$$
\alpha=P_{H_{0}}\left(\text { reject } H_{0}\right)=P(X<c \mid \lambda=1)=\int_{0}^{c} e^{-x} d x=1-e^{-c}
$$

and

$$
\beta=P_{H_{A}}\left(\operatorname{accept} H_{0}\right)=P(X>c \mid \lambda=1 / 2)=\int_{c}^{\infty} 2 e^{-2 x} d x=e^{-2 c}
$$

Thus, $\alpha=1-e^{-c}$ and $\beta=e^{-2 c}$ which easily implies that

$$
1-\alpha=\sqrt{\beta}
$$

Rewrite this as $\alpha+\sqrt{\beta}=1$ to illustrate the direct tradeoff between them: as α increases, β must decrease, and vice-versa.
4. If X has an Exponential (λ) distribution so that $f(x \mid \lambda)=\lambda^{-1} e^{-x / \lambda}$, then the Fisher information (as done in class on January 26) is

$$
I(\lambda)=\frac{1}{\lambda^{2}}
$$

and the maximum likelihood estimator (as done in class on January 31) is

$$
\hat{\lambda}_{\mathrm{MLE}}=\bar{X}
$$

Hence, a significance level 0.1 test of $H_{0}: \lambda=1 / 5$ vs. $H_{A}: \lambda \neq 1 / 5$ has rejection region

$$
\sqrt{n I\left(\hat{\lambda}_{\mathrm{MLE}}\right)}\left|\hat{\lambda}_{\mathrm{MLE}}-\lambda_{0}\right| \geq z_{0.05}
$$

or

$$
\frac{\sqrt{n}}{\bar{X}}\left|\bar{X}-\frac{1}{5}\right| \geq 1.645
$$

(10.10) Let μ denote the average hardness index. In order to test the manufacturer's claim, we want to test $H_{0}: \mu \geq 64$ against $H_{A}: \mu<64$. It is equivalent to test $H_{0}: \mu=64$ against $H_{A}: \mu<64$. The test statistic is given by

$$
Z=\frac{\bar{Y}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{62-64}{8 / \sqrt{50}} \approx-1.77
$$

In order to conduct this test at the significance level $\alpha=0.01$, we find that the rejection region is

$$
R R=\left\{\text { reject } H_{0} \text { if } Z<z_{0.01}=-2.326\right\}
$$

Since $Z=-1.77$ does not fall in the rejection region $(-1.77>-2.326)$, we do not reject H_{0} in favour of H_{A} at the 0.01 level. Thus, we conclude that there is insufficient evidence to reject the manufacturer's claim.
(10.38) The rejection region is

$$
\frac{\hat{\theta}-\theta_{0}}{\sigma_{\hat{\theta}}}<-z_{\alpha}
$$

which is true if and only if

$$
\hat{\theta}+z_{\alpha} \sigma_{\hat{\theta}}<\theta_{0}
$$

That is, H_{0} will be rejected at the significance level α if and only if the $100(1-\alpha) \%$ upper confidence bound for θ (namely, $\hat{\theta}+z_{\alpha} \sigma_{\hat{\theta}}$) is less than θ_{0}.
(10.50) A t-test can be used whenever one wants to conduct a hypothesis test of the population mean when the population is known to have a normal distribution with unknown variance. The t-test also works reasonably well for populations whose distribution is mound-shaped (and resembles the normal).
(10.73) Let σ denote the standard deviation of the accuracy of the precision instrument. In order to assess the precision, we want to test $H_{0}: \sigma=0.7$ against $H_{A}: \sigma>0.7$. It is equivalent to test $H_{0}: \sigma^{2}=0.49$ against $H_{A}: \sigma^{2}>0.49$. The sample variance is given by

$$
\begin{aligned}
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & =\frac{(353-352.5)^{2}+(351-352.5)^{2}+(351-352.5)^{2}+(355-352.5)^{2}}{3} \\
& \approx 3.667
\end{aligned}
$$

so that the test statistic is

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \approx \frac{3 \cdot 3.667}{0.49} \approx 22.45
$$

(Recall that this is the distribution of the null hypothesis, i.e., assuming that $\sigma_{0}^{2}=0.49$.) Consulting Table 6 for the χ^{2} density, we find $\chi_{0.005,3}^{2}=12.8381$. Since $22.45 \gg 12.8381$, we see that the p-value must be smaller than 0.005 .

