
Stat 252.01 Winter 2006
Assignment #8 Solutions

Important Remark: The factorizations of L into L = g · h are not unique. Many answers are
possible.

Important Remark: Any one-to-one function of a sufficient statistic for θ is also sufficient for θ.

(9.30) If Y1, . . . , Yn are iid N (µ, σ2) random variables each with density

f(y|µ, σ2) =
1√

σ22π
exp

{
−(y − µ)2

2σ2

}
,

then the likelihood function is

L(µ, σ2) = (2π)−n/2(σ2)−n/2 exp
{
− 1

2σ2

∑
(yi − µ)2

}
.

(a) If µ is unknown, and σ2 is known, then with

U = y, g(U, µ) = exp
{

1
2σ2

(
2µnU − µ2

)}
,

h(y1, . . . , yn) = (2π)−n/2(σ2)−n/2 exp
{
− 1

2σ2

∑
y2

i

}
,

the Factorization Theorem implies Y is sufficient for µ.

(b) If µ is known, and σ2 is unknown, then with

U =
∑

(yi − µ)2, g(U, σ2) = (σ2)−n/2 exp
{
− 1

2σ2
U

}
,

h(y1, . . . , yn) = (2π)−n/2,

the Factorization Theorem implies
∑

(Yi − µ)2 is sufficient for σ2.

(c) If both µ and σ2 are unknown, then with

U = (U1, U2) =
(∑

yi,
∑

y2
i

)
,

g(U, (µ, σ2)) = g((U1, U2), (µ, σ2)) = (σ2)−n/2 exp
{

1
2σ2

(
2µU1 + U2 − µ2

)}
,

h(y1, . . . , yn) = (2π)−n/2,

the Factorization Theorem implies (
∑

Yi,
∑

Y 2
i ) is jointly sufficient for (µ, σ2).

(9.34) If Y1, . . . , Yn are iid geometric random variables each with density

f(y|p) = p(1− p)y,



for y = 1, 2, 3, . . ., then the likelihood function is

L(p) = p(1− p)
∑

yi .

If
U = y, g(U, p) = p(1− p)nU , and h(y1, . . . , yn) = 1,

then since L(p) = g(U, p) · h(y), we conclude by the Factorization Theorem that Y is sufficient
for p.

(9.36) If Y1, . . . , Yn are iid each with density

f(y|α, β) = αβαy−(α+1)

for y ≥ β, then for fixed β the likelihood function is

L(α) = αnβnα
(∏

yi

)−(α+1)
.

If
U =

∏
yi, g(U,α) = αnβnαU−(α+1), and h(y1, . . . , yn) = 1,

then since L(α) = g(U,α)·h(y), we conclude by the Factorization Theorem that
∏

Yi is sufficient
for α.

(9.37) If Y1, . . . , Yn are iid each with density from the exponential family

f(y|θ) = a(θ)b(y) exp{c(θ)d(y)}, α ≤ θ ≤ β

where α and β do not depend on θ, then the likelihood function is

L(θ) = [a(θ)]n
[∏

b(yi)
]
exp{c(θ)

∑
d(yi)}.

If
U =

∑
d(yi), g(U, θ) = [a(θ)]n exp{c(θ)U}, and h(y1, . . . , yn) =

∏
b(yi),

then since L(θ) = g(U, θ) · h(y), we conclude by the Factorization Theorem that
∑

d(Yi) is
sufficient for θ.

(9.74) (a) If Y1, . . . , Yn are a random sample from the density function

f(y|θ) =
1
θ
ryr−1e−yr/θ, y > 0

where θ > 0 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) =
n∏

i=1

1
θ
ryr−1

i e−yr
i /θ = θ−n · rn ·

(
n∏

i=1

yi

)r−1

· exp

(
−1

θ

n∑
i=1

yr
i

)
.

If

U =
n∑

i=1

yr
i , g(U, θ) = θ−n · exp

(
−U

θ

)
, h(y1, . . . , yn) = rn ·

(
n∏

i=1

yi

)r−1

,



then the Factorization Theorem implies
∑

Y r
i is sufficient for θ.

(c) Since the MLE obtained in (b), namely

θ̂MLE =
1
n

n∑
i=1

Y r
i ,

is a (one-to-one function of the) sufficient statistic from (a), we conclude that if it is unbiased,
or can be adjusted to be unbiased, then the MVUE of θ will be obtained. Since the Yi are iid,
we find

E(θ̂MLE) =
1
n

n∑
i=1

E(Y r
i ) = E(Y r

1 ) =
∫ ∞

0
yr f(y|θ) dy =

r

θ

∫ ∞

0
y2r−1 e−yr/θ dy.

To compute this integral, we use the substitution x = yr, dx = ryr−1dr so that

E(θ̂MLE) =
r

θ

∫ ∞

0
y2r−1 e−yr/θ dy =

∫ ∞

0

x

θ
e−x/θ dx = θ

since we recognize the last integral as the mean of a Gamma(α = 1, β = θ) random variable.
Therefore,

θ̂MLE =
1
n

n∑
i=1

Y r
i

is the MVUE of θ.

(9.75) (b) Since Y1, . . . , Yn are iid uniform(0, 2θ+1) random variables, then the variance of the
underlying distribution is

(2θ + 1)2

12
.

In part (a) we determined that the maximum likelihood estimator of θ is

θ̂MLE =
max{Y1, . . . , Yn} − 1

2
.

Therefore, the required MLE is

(2θ̂MLE + 1)2

12
=

(2max{Y1,...,Yn}−1
2 + 1)2

12
=

(max{Y1, . . . , Yn})2

12
.

(9.80) If Y1, . . . , Yn are iid with common density

f(y|θ) = (θ + 1)yθ, 0 < y < 1

where θ > −1 is a parameter, then the likelihood function is

L(θ) =
n∏

i=1

f(yi|θ) =
n∏

i=1

(θ + 1)yθ
i = (θ + 1)n

(
n∏

i=1

yi

)θ

.

The maximum likelihood estimator θ̂MLE is obtained by maximizing L(θ), or equivalently, by
maximizing the log-likelihood function `(θ) given by

`(θ) = n log(θ + 1) + θ

n∑
i=1

log yi.



Since

`′(θ) =
n

θ + 1
+

n∑
i=1

log yi

we find `′(θ) = 0 when

n

θ + 1
+

n∑
i=1

log yi = 0 or θ = − n
n∑

i=1

log yi

− 1.

Finally
`′′(θ) = − n

(θ + 1)2
< 0

so that by the second derivative test we conclude,

θ̂MLE = − n
n∑

i=1

log Yi

− 1.

Recall that in exercise 9.61 we found

θ̂MOM =
2Y − 1
1− Y

.

(9.81) If a coin is tossed twice, then there are three possibilities for the number of heads, namely
0,1, or 2. If the probability of flipping heads is p, then

P (Y = 0) = (1− p)2, P (Y = 1) = 2p(1− p), P (Y = 2) = p2.

It is a simple matter of plugging in the two possible values of p, namely 1/4 and 3/4 to determine
that

• p = 1/4 maximizes P (Y = 0),

• both p = 1/4 and p = 3/4 maximize P (Y = 1),

• p = 3/4 maximizes P (Y = 2).

Since the maximum likelihood estimator of p is simply the value that maximizes the likelihood
function, we begin by determining the likelihood function. By definition, the likelihood function
L(p) is the product of the densities of the random variables in the sample. Since there is only
one random variable being observed, we find that L(p) is simply the density of Y , namely

P (Y = 0) = (1− p)2, P (Y = 1) = 2p(1− p), P (Y = 2) = p2.

Thus, the MLE depends on the observed value y so that

• if y = 0, then p̂MLE = 1/4,

• if y = 1, then p̂MLE = 1/4 and p̂MLE = 3/4 (there is no unique maximum),

• if y = 2, then p̂MLE = 3/4.



3. (a) It is highly unlikely that the iid assumption is reasonable. In order to postulate iid
Bin(k, p), she is assuming that each animal has the same probability of being trapped. This is
doubtful both within a species and between species. (Are some animals “dumber” and others
“smarter”? What about different species? Are some more cautious than others?) This is also
doubtful because animals are likely to get “smarter” after being trapped once. (Think of any
Pavlovian experiment.) The independent trials assumption is also dubious. Is it reasonable to
assume that animals do not warn others of the danger of the trap? Probably not.

(b) For a Bin(k, p) random variable Y , we have E(Y ) = kp and E(Y 2) = Var(Y ) + [E(Y )]2 =
kp(1−p)+k2p2. The method of moments system implies that µ̂1 = kp and µ̂2 = kp(1−p)+k2p2.
Solving gives

p̂MOM = 1− µ̂2 − (µ̂1)2

µ̂1

and
k̂MOM =

µ̂1

p̂MOM
.

The data yield µ̂1 = 12.6 and µ̂2 = 163. Thus,

p̂MOM =
209
315

≈ 0.663 and k̂MOM =
3969
209

≈ 19.

(c) In this case the data yield µ̂1 = 11.2 and µ̂2 = 139.2 which give

p̂MOM =
−8
35

≈ −0.229 and k̂MOM = −49.

These are nonsensical estimates since we require p ∈ [0, 1] and k > 0. Clearly if these were
the data observed, the postulate of a binomial distribution would definitely be cast into serious
doubt!


