(9.73) If Y_{1}, \ldots, Y_{n} are iid exponential (θ), then each Y_{i} has common density

$$
f(y \mid \theta)=\frac{1}{\theta} e^{-y / \theta}, \quad y>0
$$

Therefore, the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} e^{-y_{i} / \theta}=\theta^{-n} \exp \left(-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}\right) .
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$, or equivalently, by maximizing the log-likelihood function $\ell(\theta)$ given by

$$
\ell(\theta)=-n \log \theta-\frac{1}{\theta} \sum_{i=1}^{n} y_{i} .
$$

Since

$$
\ell^{\prime}(\theta)=-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}
$$

we find $\ell^{\prime}(\theta)=0$ when

$$
-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}=0 \quad \text { or } \quad \theta=\frac{1}{n} \sum_{i=1}^{n} y_{i} \text {. }
$$

Finally

$$
\ell^{\prime \prime}(\theta)=\frac{n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} y_{i}
$$

so that

$$
\ell^{\prime \prime}\left(\frac{1}{n} \sum y_{i}\right)=-\frac{n^{3}}{\left(\sum y_{i}\right)^{2}}<0 .
$$

By the second derivative test we conclude,

$$
\hat{\theta}_{\text {MLE }}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}=\bar{Y} .
$$

Since $\theta>0$, we see that the function $T(\theta)=\theta^{2}$ is one-to-one. Therefore, the maximum likelihood estimator of θ^{2} is

$$
\hat{\theta}_{\mathrm{MLE}}^{2}=\bar{Y}^{2} .
$$

(9.74) (b) If Y_{1}, \ldots, Y_{n} are a random sample from the density function

$$
f(y \mid \theta)=\frac{1}{\theta} r y^{r-1} e^{-y^{r} / \theta}, \quad y>0
$$

where $\theta>0$ is a parameter, then the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} r y_{i}^{r-1} e^{-y_{i}^{r} / \theta}=\theta^{-n} \cdot r^{n} \cdot\left(\prod_{i=1}^{n} y_{i}\right)^{r-1} \cdot \exp \left(-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{r}\right) .
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$, or equivalently, by maximizing the log-likelihood function $\ell(\theta)$ given by

$$
\ell(\theta)=-n \log \theta+n \log r+(r-1) \sum_{i=1}^{n} \log y_{i}-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}^{r}
$$

Since

$$
\ell^{\prime}(\theta)=-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}^{r}
$$

we find $\ell^{\prime}(\theta)=0$ when

$$
-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}^{r}=0 \quad \text { or } \quad \theta=\frac{1}{n} \sum_{i=1}^{n} y_{i}^{r}
$$

Finally

$$
\ell^{\prime \prime}(\theta)=\frac{n}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} y_{i}^{r}
$$

so that

$$
\ell^{\prime \prime}\left(\frac{1}{n} \sum y_{i}^{r}\right)=-\frac{n^{3}}{\left(\sum y_{i}^{r}\right)^{2}}<0
$$

By the second derivative test we conclude,

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{r}
$$

(9.75) (a) Suppose that Y_{1}, \ldots, Y_{n} are iid uniform $[0,2 \theta+1]$ so that each Y_{i} has density function

$$
f(y \mid \theta)=\frac{1}{2 \theta+1}, \quad 0 \leq y \leq 2 \theta+1
$$

The likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=(2 \theta+1)^{-n}
$$

provided that $0 \leq y_{i} \leq 2 \theta+1$ for each $i=1, \ldots, n$. In other words,

$$
L(\theta)= \begin{cases}(2 \theta+1)^{-n}, & 0 \leq \max \left\{y_{1}, \ldots, y_{n}\right\} \leq 2 \theta+1 \\ 0, & \text { otherwise }\end{cases}
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$. Since $(2 \theta+1)^{-n}$ is strictly decreasing in θ provided that $0 \leq \max \left\{y_{1}, \ldots, y_{n}\right\} \leq 2 \theta+1$, we see that the maximum value is obtained when θ is chosen as small as possible subject to the constraint $\max \left\{y_{1}, \ldots, y_{n}\right\} \leq 2 \theta+1$. Thus, the maximum likelihood estimator is

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{\max \left\{Y_{1}, \ldots, Y_{n}\right\}-1}{2}
$$

(9.76) (a) Suppose that Y_{1}, Y_{2}, Y_{3} are iid $\operatorname{Gamma}(2, \theta)$ random variables so that each has density

$$
f(y \mid \theta)=\frac{1}{\theta^{2}} y e^{-y / \theta}, \quad y>0
$$

Therefore, the likelihood function is

$$
L(\theta)=\prod_{i=1}^{3} f\left(y_{i} \mid \theta\right)=\prod_{i=1}^{3} \frac{1}{\theta^{2}} y_{i} e^{-y_{i} / \theta}=\theta^{-6} \cdot \prod_{i=1}^{3} y_{i} \cdot \exp \left(-\frac{1}{\theta} \sum_{i=1}^{3} y_{i}\right)
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$, or equivalently, by maximizing the log-likelihood function $\ell(\theta)$ given by

$$
\ell(\theta)=-6 \log \theta+\sum_{i=1}^{3} \log y_{i}-\frac{1}{\theta} \sum_{i=1}^{3} y_{i}
$$

Since

$$
\ell^{\prime}(\theta)=-\frac{6}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{3} y_{i}
$$

we find $\ell^{\prime}(\theta)=0$ when

$$
-\frac{6}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{3} y_{i}=0 \quad \text { or } \quad \theta=\frac{1}{6} \sum_{i=1}^{3} y_{i}=\frac{\bar{y}}{2} .
$$

Finally

$$
\ell^{\prime \prime}(\theta)=\frac{6}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{3} y_{i}
$$

so that

$$
\ell^{\prime \prime}\left(\frac{1}{6} \sum y_{i}\right)=-\frac{6^{3}}{\left(\sum y_{i}\right)^{2}}<0
$$

By the second derivative test we conclude,

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{6} \sum_{i=1}^{3} Y_{i}=\frac{\bar{Y}}{2} .
$$

Based on the observed data, we find that the maximum likelihood estimate of θ is

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{120+130+128}{6}=63 .
$$

(b) Since each Y_{1}, Y_{2}, Y_{3} are iid $\operatorname{Gamma}(2, \theta)$, and since

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{6} \sum_{i=1}^{3} Y_{i}=\frac{\bar{Y}}{2}
$$

we conclude

$$
E\left(\hat{\theta}_{\mathrm{MLE}}\right)=\frac{1}{6} \sum_{i=1}^{3} E\left(Y_{i}\right)=\frac{3 \cdot 2 \theta}{6}=\theta
$$

and

$$
\operatorname{Var}\left(\hat{\theta}_{\mathrm{MLE}}\right)=\frac{1}{6^{2}} \sum_{i=1}^{3} \operatorname{Var}\left(Y_{i}\right)=\frac{3 \cdot 2 \theta^{2}}{6^{2}}=\frac{\theta^{2}}{6}
$$

(c) If $\theta=130$, then an approximate bound for the error of estimation is given by

$$
2 \sqrt{\operatorname{Var}\left(\hat{\theta}_{\mathrm{MLE}}\right)}=2 \sqrt{\frac{\theta^{2}}{6}}=2 \sqrt{\frac{130^{2}}{6}} \approx 106.14
$$

(d) Since the variance of Y is $\operatorname{Var}(Y)=2 \theta^{2}$, we conclude that the MLE of $\operatorname{Var}(Y)$ is

$$
\hat{\operatorname{Var}}(Y)_{\mathrm{MLE}}=2 \hat{\theta}_{\mathrm{MLE}}^{2}=2(63)^{2}=7938
$$

(9.77) (a) Suppose that Y_{1}, \ldots, Y_{n} are a random sample from the density function

$$
f(y \mid \theta)=\frac{1}{\Gamma(\alpha) \theta^{\alpha}} y^{\alpha-1} e^{-y / \theta}, \quad y>0
$$

where $\alpha>0$ is known. Therefore, the likelihood function is

$$
L(\theta)=\prod_{i=1}^{n} f\left(y_{i} \mid \theta\right)=\prod_{i=1}^{n} \frac{1}{\Gamma(\alpha) \theta^{\alpha}} y_{i}^{\alpha-1} e^{-y_{i} / \theta}=\theta^{-n \alpha} \cdot \Gamma(\alpha)^{-n} \cdot\left(\prod_{i=1}^{n} y_{i}\right)^{\alpha-1} \cdot \exp \left(-\frac{1}{\theta} \sum_{i=1}^{n} y_{i}\right) .
$$

The maximum likelihood estimator $\hat{\theta}_{\text {MLE }}$ is obtained by maximizing $L(\theta)$, or equivalently, by maximizing the \log-likelihood function $\ell(\theta)$ given by

$$
\ell(\theta)=-n \alpha \log \theta-n \log \Gamma(\alpha)+(\alpha-1) \sum_{i=1}^{n} \log y_{i}-\frac{1}{\theta} \sum_{i=1}^{n} y_{i} .
$$

Since

$$
\ell^{\prime}(\theta)=-\frac{n \alpha}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}
$$

we find $\ell^{\prime}(\theta)=0$ when

$$
-\frac{n \alpha}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} y_{i}=0 \quad \text { or } \quad \theta=\frac{1}{n \alpha} \sum_{i=1}^{n} y_{i}=\frac{\bar{y}}{\alpha} .
$$

Finally

$$
\ell^{\prime \prime}(\theta)=\frac{n \alpha}{\theta^{2}}-\frac{2}{\theta^{3}} \sum_{i=1}^{n} y_{i}
$$

so that

$$
\ell^{\prime \prime}\left(\frac{1}{n \alpha} \sum y_{i}\right)=-\frac{n^{3} \alpha^{3}}{\left(\sum y_{i}\right)^{2}}<0
$$

since $\alpha>0$. By the second derivative test we conclude,

$$
\hat{\theta}_{\mathrm{MLE}}=\frac{1}{n \alpha} \sum_{i=1}^{n} Y_{i}=\frac{\bar{Y}}{\alpha} .
$$

