
Stat 252.01 Winter 2006
Assignment #6 Solutions

Exercises from Text

(8.39) (a) If Y1, . . . , Yn are iid uniform[0, θ], then for 0 ≤ t ≤ θ,

P (Y(n) ≤ t) = P (Y1 ≤ t, . . . , Yn ≤ t) = [P (Y1 ≤ t)]n =
(

t

θ

)n

.

Hence, if U = Y(n)/θ, then

P (U ≤ u) = P (Y(n) ≤ uθ) =
(

uθ

θ

)n

= un, 0 ≤ u ≤ 1.

That is,

FU (u) =


0, u < 0
un, 0 ≤ u ≤ 1,

1, u > 1.

(b) A 95% lower confidence bound for θ is therefore found by finding a such that P (U > a) = 0.05
for then we will have

P (U > a) = P

(
Y(n)

θ
> a

)
= P

(
θ <

Y(n)

a

)
= 0.05.

Solving

0.05 = P (U > a) =
∫ 1

a
fu(u) du =

∫ 1

a
nun−1 du = 1− an

for a gives a = (0.95)1/n so that

P

(
θ <

Y(n)

(0.95)1/n

)
= 0.05 or, equivalently, P

(
θ ≥

Y(n)

(0.95)1/n

)
= 0.95.

(8.40) (a) By definition, if 0 < y < θ, then

FY (y) =
∫ y

−∞
f(u) du =

∫ y

0

2(θ − u)
θ2

du =
(2θu− u2)

θ2

∣∣∣∣y
0

=
(2θy − y2)

θ2
=

2y

θ
− y2

θ2
.

That is,

FY (y) =


0, y ≤ 0
2y
θ − y2

θ2 , 0 < y < 1,

1, y ≥ θ.

(b) If U = Y/θ, then for 0 < u < 1,

FU (u) = P (U ≤ u) = P (Y ≤ uθ) =
2uθ

θ
− u2θ2

θ2
= 2u− u2.

Since the distribution of U does not depend on θ, this shows that U = Y/θ is a pivotal quantity.



(c) A 90% lower confidence limit for θ is therefore found by finding a such that P (U > a) = 0.10
for then we will have

P (U > a) = P

(
Y

θ
> a

)
= P

(
θ <

Y

a

)
= 0.10.

Solving

0.10 = P (U > a) =
∫ 1

a
fu(u) du =

∫ 1

a
(2− 2u) du = 1− 2a + a2

for a gives a = 1 −
√

0.10 (use the quadratic formula, and reject the root for which a > 1) so
that

P

(
θ <

Y

1−
√

0.10

)
= 0.10 or, equivalently, P

(
θ ≥ Y

1−
√

0.10

)
= 0.90.

(8.41) (a) A 90% upper confidence limit for θ is found by finding b such that P (U < b) = 0.10
for then we will have

P (U < b) = P

(
Y

θ
< b

)
= P

(
θ >

Y

b

)
= 0.10.

Solving

0.10 = P (U < b) =
∫ b

0
fu(u) du =

∫ b

0
(2− 2u) du = 1− 2b + b2

for b gives b = 1−
√

0.90 (use the quadratic formula, and reject the root for which b > 1) so that

P

(
θ >

Y

1−
√

0.90

)
= 0.10 or, equivalently, P

(
θ ≤ Y

1−
√

0.90

)
= 0.90.

(b) We know from (8.40) (c) that

P

(
θ <

Y

1−
√

0.10

)
= 0.10

and we know from (8.41) (a) that

P

(
θ >

Y

1−
√

0.90

)
= 0.10.

Therefore,

P

(
Y

1−
√

0.90
< θ <

Y

1−
√

0.10

)
= 0.80

so that (
Y

1−
√

0.90
,

Y

1−
√

0.10

)
is an 80% confidence interval for θ.

(8.6) Recall that a Poisson(λ) random variable has mean λ and variance λ. This was also done
in Stat 251.

(a) Since λ is the mean of a Poisson(λ) random variable, then a natural unbiased estimator for
λ is

λ̂ = Y .



(As you saw in problem (8.4), there is NO unique unbiased estimator, so many other answers
are possible.) It is a simple matter to compute that

E(λ̂) = E(Y ) = λ and Var(λ̂) =
λ

n
.

We will need these in (c).

(b) If C = 3Y + Y 2, then

E(C) = E(3Y ) + E(Y 2) = 3E(Y ) + [Var(Y ) + E(Y )2] = 3λ + [λ + λ2] = 4λ + λ2.

(c) This part is a little tricky. There is NO algorithm to solve it; instead you must THINK.
Since E(C) depends on the parameter λ, we do not know its actual value. Therefore, we can
estimate it. Suppose that θ = E(C). Then, a natural estimator of θ = 4λ + λ2 is

θ̂ = 4λ̂ + λ̂2,

where λ̂ = Y as in (a). However, if we compute E(λ̂) we find

E(θ̂) = E(4λ̂) + E(λ̂2) = 4E(λ̂) + [Var(λ̂) + E(λ̂)2] = 4λ +
λ

n
+ λ2.

This does not equal θ, so that θ̂ is NOT unbiased. However, a little thought shows that if we
define

θ̃ := 4λ̂ + λ̂2 − λ̂

n
= 4Y + Y

2 − Y

n

then, E(θ̃) = 4λ̂ + λ̂2 so that θ̃ IS an unbiased estimator of θ = E(C).

(8.8) If Y is a uniform (θ, θ + 1) random variable, then its density is

f(y) =

{
1, θ ≤ y ≤ θ + 1,

0, otherwise.

It is a simple matter to compute

E(Y ) =
2θ + 1

2
and Var Y =

1
12

.

(a) Hence,

E(Y ) = E
(

Y1 + · · ·+ Yn

n

)
=

E(Y1) + · · ·+ E(Yn)
n

=
2θ+1

2 + · · ·+ 2θ+1
2

n
=

2nθ + n

2n
= θ +

1
2
.

We now find

B(Y ) = E(Y )− θ =
(

θ +
1
2

)
− θ =

1
2
.

(b) A little thought shows that our calculation in (a) iummediately suggests a natural unbiased
estimator of θ, namely

θ̂ = Y − 1
2
.



(c) We first compute that

Var(Y ) = Var
(

Y1 + · · ·+ Yn

n

)
=

Var(Y1) + · · ·+ Var(Yn)
n2

=
1/12 + · · ·+ 1/12

n2
=

1
12n

.

As on page 367,
MSE(Y ) = Var(Y ) + (B(Y ))2

so that

MSE(Y ) =
1

12n
+

(
1
2

)2

=
3n + 1
12n

.

(8.9) (a) Let θ = Var(Y ), and θ̂ = n(Y/n)(1 − Y/n). To prove θ̂ is unbiased, we must show
that E(θ̂) 6= θ. Since

E(θ̂) = E(n(Y/n)(1− Y/n)) = E(Y )− 1
n

E(Y 2),

and since Y is Binomial(n, p) so that E(Y ) = np, E(Y 2) = Var(Y )+ [E(Y )]2 = np(1−p)+n2p2,
we conclude that

E(θ̂) = np− np(1− p) + n2p2

n
= (n− 1)p(1− p).

(b) As an unbiased estimator, use

n

n− 1
θ̂ = n

(
Y

n− 1

) (
1− Y

n

)
.

(8.34) Let θ = V (Y ). If Y is a geometric random variable, then

E(Y 2) = V (Y ) + [E(Y )]2 =
2
p2
− 1

p
.

Now a little thought shows that

E
(

Y 2

2
− Y

2

)
=

1
p2
− 1

2p
− 1

2p
=

1
p2
− 1

p
=

1− p

p2
= θ.

Thus, choose

V̂ (Y ) = θ̂ =
Y 2 − Y

2
.

If Y is used to estimate 1/p, then a two standard error bound on the error of estimation is given
by

2
√

V̂ (Y ) = 2
√

θ̂ = 2

√
Y 2 − Y

2
.

(8.58) (a) As noted in class (see Example 8.9), we need to solve the equation

1.96

√
p(1− p)

n
= 0.05

for n when p = 0.9. We find n = 138.2976, so that we take a sample size of n = 139. (Note
that we cannot have a fractional sample size and that we need to round up to 139 because if we
round down, then the variance will be more than 0.05.)



(b) If no information about p is known, then using p = 0.5 is the most conservative estimate.
In this case, we solve

1.96

√
p(1− p)

n
= 0.05

for n when p = 0.5. This gives a sample size of n = 385.

(8.4) (a) Recall that if Y has the exponential density as given in the problem, then E(Y ) = θ.
This was done in Stat 251. In order to decide which estimators are unbiased, we simply compute
E(θ̂i) for each i. Four of these are easy:

E(θ̂1) = E(Y1) = θ;

E(θ̂2) = E
(

Y1 + Y2

2

)
=

E(Y1) + E(Y2)
2

=
θ + θ

2
= θ;

E(θ̂3) = E
(

Y1 + 2Y2

3

)
=

E(Y1) + 2E(Y2)
3

=
θ + 2θ

3
= θ;

E(θ̂5) = E(Y ) = E
(

Y1 + Y2 + Y3

3

)
=

E(Y1) + E(Y2) + E(Y3)
3

=
θ + θ + θ

3
= θ.

In order to compute E(θ̂4) = E(min(Y1, Y2, Y3)) we need to do a bit of work.

P (min(Y1, Y2, Y3) > t) = P (Y1 > t, Y2 > t, Y3 > t) = P (Y1 > t) · P (Y2 > t) · P (Y3 > t)

= [P (Y1 > t)]3

= e−3t/θ.

Thus, f(t) = (3/θ)e−3t/θ which, as you will notice, is the density of an Exponential(θ/3) random
variable. (WHY?) Thus,

E(θ̂4) = E(min(Y1, Y2, Y3)) =
θ

3
.

Hence, θ̂1, θ̂2, θ̂3, and θ̂5 are unbiased, while θ̂4 is biased.

(b) To decide which has the smallest variance, we simply compute. Recall that an Exponential(θ)
random variable has variance θ2. Thus,

Var(θ̂1) = Var(Y1) = θ2;

Var(θ̂2) = Var
(

Y1 + Y2

2

)
=

Var(Y1) + Var(Y2)
4

=
θ2 + θ2

4
=

θ2

2
;

Var(θ̂3) = Var
(

Y1 + 2Y2

3

)
=

Var(Y1) + 4 Var(Y2)
9

=
θ2 + 4θ2

9
=

5θ2

9
;

Var(θ̂5) = Var(Y ) = Var
(

Y1 + Y2 + Y3

3

)
=

Var(Y1) + Var(Y2) + Var(Y3)
9

=
θ2 + θ2 + θ2

9
=

θ2

3
.

Thus, θ̂5 has the smallest variance. In fact, we will show later that it is the minimum variance
unbiased estimator. That is, no other unbiased estimator of the mean will have smaller variance
than Y .



(9.1) Using the results of Exercise 8.4, we find

Var(θ̂1) = θ2, Var(θ̂2) =
θ2

2
, Var(θ̂3) =

5θ2

9
, Var(θ̂5) =

θ2

3
.

Thus,

eff(θ̂1, θ̂5) =
Var(θ̂5)

Var(θ̂1)
=

1
3
, eff(θ̂2, θ̂5) =

Var(θ̂5)

Var(θ̂2)
=

2
3
, eff(θ̂3, θ̂5) =

Var(θ̂5)

Var(θ̂3)
=

3
5
.

(9.4) In Example 9.1, it is shown that

Var(θ̂2) =
θ2

n(n + 2)
,

and we have as a simple extension of Problem #1 on Assignment #2 that

Var(θ̂1) = (n + 1)2 Var(Y(1)) = (n + 1)2
[

2θ2

(n + 1)(n + 2)
− θ2

(n + 1)2

]
=

nθ2

n + 2
.

Thus we conclude,

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

1
n2

.

Notice that this result implies that

Var(θ̂1) = n2 Var(θ̂2).

As n increases, the variance of θ̂1 increases very quickly relative to the variance of θ̂2. In other
words, the larger n, the bigger the variance of θ̂1 relative to variance θ̂2. Thus, θ̂2 is a markedly
superior (unbiased) estimator.

(9.7) If MSE(θ̂1) = θ2, then Var(θ̂1) = MSE(θ̂1) = θ2 since θ̂1 is unbiased. If θ̂2 = Y , then since
the Yi are exponential, we conclude E(Y ) = θ and Var(Y ) = θ2/n. Thus,

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
=

1
n

.

Extra Exercise

Suppose that

f(y|θ) =
e(y−θ)[

1 + e(y−θ)
]2 ,

where −∞ < y < ∞, and −∞ < θ < ∞. Let U = Y − θ so that

P (U ≤ u) = P (Y ≤ u + θ) =
∫ u+θ

−∞

e(y−θ)[
1 + e(y−θ)

]2 dy =
e(y−θ)

1 + e(y−θ)

∣∣∣∣u+θ

−∞
=

eu

1 + eu
.

We also calculate that for −∞ < u < ∞,

fU (u) =
eu

[1 + eu]2
.



Therefore, U is a pivotal quantity. Hence, we must find a and b so that∫ a

−∞
fU (u) du = α1 and

∫ ∞

b
fU (u) du = α2.

Now,

α1 =
∫ a

−∞
fU (u) du =

∫ a

−∞

eu

[1 + eu]2
du =

eu

1 + eu

∣∣∣∣a
−∞

=
ea

1 + ea

so that

a = log
(

α1

1− α1

)
.

Furthermore,

α2 =
∫ ∞

b
fU (u) du =

∫ ∞

b

eu

[1 + eu]2
du =

eu

1 + eu

∣∣∣∣∞
b

= 1− eb

1 + eb

so that

b = log
(

1− α2

α2

)
.

This tells us that

1− (α1 + α2) = P (a ≤ U ≤ b) = P

(
log

(
α1

1− α1

)
≤ U ≤ log

(
1− α2

α2

) )
or, in other words,

1− (α1 + α2) = P

(
log

(
α1

1− α1

)
≤ Y − θ ≤ log

(
1− α2

α2

) )
= P

(
Y − log

(
1− α2

α2

)
≤ θ ≤ Y − log

(
α1

1− α1

) )
.


