Stat 252 Winter 2006 Assignment #9

This assignment is due at the beginning of class on Monday, March 27, 2006. You must submit all problems that are marked with an asterix (*).

1. * Suppose that Y_1, \ldots, Y_n are iid from the $\mathcal{N}(\mu, \sigma^2)$ distribution, where σ^2 is known, but μ is unknown. Consider testing $H_0: \mu = \mu_0$ against $H_A: \mu > \mu_0$ by rejecting H_0 if Z > 1.65, where

$$Z = \frac{\overline{Y} - \mu_0}{\sigma / \sqrt{n}}$$

In class we showed that this test has significance level 0.05.

- (a) Assume that $\mu_0 = 0$, $\sigma^2 = 25$, and n = 4. What is the power of the test when $\mu = 1$, when $\mu = 2$, and when $\mu = 3$?
- (b) Repeat part (a) assuming a larger sample size of n = 16. Do you have any comments about the comparison of power for the two sample sizes?

2. * Suppose that X_1, \ldots, X_{10} are iid from the $\mathcal{N}(\mu, \sigma^2)$ distribution, where both μ and σ^2 are unknown. As usual, let S^2 denote the sample variance. Consider testing $H_0: \sigma^2 = 1$ against $H_A: \sigma^2 > 1$, by rejecting H_0 when $S^2 > c$.

- (a) Determine c so that this test has significance level 0.1.
- (b) What is the power of this test when $\sigma^2 = 2$ and when $\sigma^2 = 3$?

NOTE: Table 6 in the back of the textbook is not complete enough for these calculations, so I have provided some quantiles of the χ_9^2 distribution below. You can give your answers to the accuracy permitted by this information.

3. * Consider observing a single random variable X from an Exponential(λ) distribution. We want to test $H_0: \lambda = 1$ against $H_A: \lambda = 1/2$ by rejecting H_0 is X < c. (For the exponential distribution, smaller values of the parameter λ tend to produce smaller values of X.) By changing c, we will change both α and β , the probabilities of a Type I and Type II error, respectively. Can you find a direct relationship between α and β which illustrates the tradeoff between them?

(continued)

4. * Suppose that X_1, \ldots, X_n are iid from the Exponential(λ) distribution. Starting with an approximate confidence interval for λ based on the Fisher information, construct a test of $H_0: \lambda = 1/5$ against $H_A: \lambda \neq 1/5$ at (approximate) significance level 0.1.

5. Do the following exercises from Wackerly, et al.

- #10.10, page 474
- #10.38, page 482
- #10.50, page 495
- #10.73, page 507
- #10.79 (a), (b), page 515
- #10.83 (a), page 515