This assignment is due at the beginning of class on Monday, March 27, 2006. You must submit all problems that are marked with an asterix (*).

1. * Suppose that Y_{1}, \ldots, Y_{n} are iid from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, where σ^{2} is known, but μ is unknown. Consider testing $H_{0}: \mu=\mu_{0}$ against $H_{A}: \mu>\mu_{0}$ by rejecting H_{0} if $Z>1.65$, where

$$
Z=\frac{\bar{Y}-\mu_{0}}{\sigma / \sqrt{n}}
$$

In class we showed that this test has significance level 0.05.
(a) Assume that $\mu_{0}=0, \sigma^{2}=25$, and $n=4$. What is the power of the test when $\mu=1$, when $\mu=2$, and when $\mu=3$?
(b) Repeat part (a) assuming a larger sample size of $n=16$. Do you have any comments about the comparison of power for the two sample sizes?
2. \quad Suppose that X_{1}, \ldots, X_{10} are iid from the $\mathcal{N}\left(\mu, \sigma^{2}\right)$ distribution, where both μ and σ^{2} are unknown. As usual, let S^{2} denote the sample variance. Consider testing $H_{0}: \sigma^{2}=1$ against $H_{A}: \sigma^{2}>1$, by rejecting H_{0} when $S^{2}>c$.
(a) Determine c so that this test has significance level 0.1.
(b) What is the power of this test when $\sigma^{2}=2$ and when $\sigma^{2}=3$?

NOTE: Table 6 in the back of the textbook is not complete enough for these calculations, so I have provided some quantiles of the χ_{9}^{2} distribution below. You can give your answers to the accuracy permitted by this information.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\alpha & 0.95 & 0.90 & 0.85 & 0.80 & 0.75 & 0.70 & 0.65 & 0.60 & 0.55 & 0.50 & 0.45 & 0.40 & 0.35 & 0.30 \\
\chi_{\alpha}^{2} & 3.33 & 4.17 & 4.82 & 5.38 & 5.90 & 6.39 & 6.88 & 7.36 & 7.84 & 8.34 & 8.86 & 9.41 & 10.01 & 10.66
\end{array}
$$

$$
\begin{array}{c|c|c|c|c|c}
\alpha & 0.25 & 0.20 & 0.15 & 0.10 & 0.05 \\
\chi_{\alpha}^{2} & 11.39 & 12.24 & 13.29 & 14.68 & 16.92
\end{array}
$$

3. \quad * Consider observing a single random variable X from an Exponential (λ) distribution. We want to test $H_{0}: \lambda=1$ against $H_{A}: \lambda=1 / 2$ by rejecting H_{0} is $X<c$. (For the exponential distribution, smaller values of the parameter λ tend to produce smaller values of X.) By changing c, we will change both α and β, the probabilities of a Type I and Type II error, respectively. Can you find a direct relationship between α and β which illustrates the tradeoff between them?
4. * Suppose that X_{1}, \ldots, X_{n} are iid from the Exponential (λ) distribution. Starting with an approximate confidence interval for λ based on the Fisher information, construct a test of $H_{0}: \lambda=1 / 5$ against $H_{A}: \lambda \neq 1 / 5$ at (approximate) significance level 0.1.
5. Do the following exercises from Wackerly, et al.

- \#10.10, page 474
- \#10.38, page 482
- \#10.50, page 495
- \#10.73, page 507
- \#10.79 (a), (b), page 515
- \#10.83 (a), page 515

