
Statistics 252 Winter 2005 Midterm #1 – Solutions

1. (a) Since

log f(y|θ) = log(y)− 2 log(θ)− y2

2θ2
,

we find
∂2

∂θ2
log f(y|θ) =

2
θ2
− 3y2

θ4
.

Thus,

I(θ) = −E
(
∂2

∂θ2
log f(Y |θ)

)
=

3E(Y 2)
θ4

− 2
θ2

=
4
θ2
.

(b) To find θ̂MOM we solve the equation E(Y ) = Y for θ. This implies

θ̂MOM =

√
2
π
Y .

(c)

Var(θ̂MOM) =
2
π

VarY =
2
nπ

VarY1 =
2
nπ

(
E(Y 2

1 )− [E(Y )]2
)

=
2
nπ

(
2− π

2

)
θ2

=
(

4− π
nπ

)
θ2

(d) The likelihood function is

L(θ) =
n∏
i=1

f(yi|θ) =

(
n∏
i=1

yi

)
θ−2n exp

(
− 1

2θ2

n∑
i=1

y2
i

)
so that the log-likelihood function is

`(θ) =
n∑
i=1

log(yi)− 2n log(θ)− 1
2θ2

n∑
i=1

y2
i .

Hence `′(θ) = 0 implies

0 = −2n
θ

+
1
θ3

n∑
i=1

y2
i

so that

θ̂MLE =

√√√√ 1
2n

n∑
i=1

Y 2
i .

(e) An approximate 95% confidence interval for θ is given by

θ̂MLE ± 1.96
1√

n I(θ̂MLE)
.

Since n = 100 and
∑
y2
i = 80000, we conclude that

θ̂MLE =

√
80000
200

=
√

400 = 20



and
I(θ̂MLE) =

4

θ̂2
MLE

=
4

400
=

1
100

.

Hence, an approximate 95% confidence interval for θ is

20± 1.96.

2. (a) Consider a population described by an unknown parameter of interest. An estimator is a rule
for constructing a “guess” or “estimate” of the parameter based on a random sample from the
population. Hence, an estimator is a random variable. After the data have been observed, it
is possible to evaluate the estimator using that data. This is then called an estimate of the
parameter.

(b) Suppose that θ̂ is an estimator of θ. The random interval [L(θ̂), U(θ̂)] is a 93% confidence
interval for θ if

P (L(θ̂) ≤ θ ≤ U(θ̂)) = 0.93.

Hence, we interpret a 93% confidence interval to mean that before the data have been ob-
served, there is a 93% chance that the parameter will lie in the random interval. However,
once the data have been observed, no such probability statement is true. Either the given
interval does or does not contain θ. Alternatively, if many, many intervals are observed, each
constructed using the same formula, then the long-run average that will contain θ is 0.93.

3. (a) Since

E(θ̂1) =
1
4
E(X) +

1
2
E(Y ) =

2θ
4

+
θ

2
= θ

and
E(θ̂2) = E(X)− E(Y ) = 2θ − θ = θ

we conclude that B(θ̂1) = B(θ̂2) = 0. Thus,

MSE(θ̂1) = Var(θ̂1) =
1
16

Var(X) +
1
4

Var(Y ) =
3
4

and
MSE(θ̂2) = Var(θ̂2) = Var(X) + Var(Y ) = 6.

(b) We find

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)
= 8.

Since both θ̂1 and θ̂2 are unbiased, the one with the smaller variance is preferrable, namely
θ̂1.

(c) Since

E(θ̂c) =
c

2
E(X) + (1− c)E(Y ) =

2cθ
2

+ (1− c)θ = θ

we see θ̂c is unbiased. Since

Var(θ̂c) =
c2

4
Var(X) + (1− c)2 Var(Y ) = c2 + 2(1− c)2 = 3c2 − 4c+ 2

the value that minimizes Var(θ̂c) is the same value that minimizes the polynomial g(c) =
3c2 − 4c + 2. Since g′(c) = 0 implies c = 2/3, and since g′′(2/3) > 0, the minimal value of c
is 2/3.



4. (a) We find that
E(Y ) = E(Y1) = 252 θ.

Thus, if

θ̂A =
Y

252
=

1
252n

n∑
i=1

Yi

then θ̂A is an unbiased estimator of θ.

(b) Since
log f(y|θ) = −252 log(θ)− log(251!) + 251 log(y)− y

θ
,

we find
∂2

∂θ2
log f(y|θ) =

252
θ2
− 2y
θ3
.

Thus,

I(θ) = −E
(
∂2

∂θ2
log f(Y |θ)

)
= −252

θ2
+

2E(Y )
θ3

=
252
θ2

.

(c) The Cramer-Rao inequality tells us that an unbiased estimator θ̂ of θ must satisfy

Var(θ̂) ≥ 1
nI(θ)

=
θ2

252n
.

Since

Var(θ̂A) =
1

2522n
VarY1 =

1
2522

· (252 θ2) =
θ2

252n
,

we have found an unbiased estimator whose variance attains the lower bound of the Cramer-
Rao inequality. Hence, θ̂A must be the MVUE of θ.


