
Statistics 252 “Practice” Midterm #2 Solutions– Winter 2005

1. (a) By definition, the significance level α is the probability of a Type I error; that is, the
probability under H0 that H0 is rejected. Hence, since Y ∼ N (µ, 4/n),

α = PH0(reject H0) = P (Y > 3.92/
√
n|µ = 0) = P

(
Y − 0

2/
√
n
>

3.92/
√
n− 0

2/
√
n

)
= P (Z > 1.96) = 0.025,

where Z ∼ N (0, 1). (The last step follows from Table 4.) Hence, we see that the hypothesis
test does, in fact, have significance level α = 0.025.

1. (b) By definition, the power of an hypothesis test is the probability under HA that H0 is
rejected. Hence, when µ = 0.5, we find

power = PHA(reject H0) = P (Y > 3.92/
√
n|µ = 0.5) = P

(
Y − 0.5

2/
√
n

>
3.92/

√
n− 0.5

2/
√
n

)
= P (Z > 1.96− 0.25

√
n )

where Z ∼ N (0, 1). If we desire the test to have power 0.9, then using Table 4, we find
P (Z > −1.28) = 0.90. Thus, we require that n satisfy

1.96− 0.25
√
n = −1.28 or n ≈ 168.

(In fact, we can take n ≥ 168 to guarantee that the test will have power (at least) 0.9 when
µ = 0.5.

2. In this problem, we find that α = P (Y < c|µ = 0) and β = P (Y > c|µ = −1/2) . Since
Y ∼ N (µ, σ2/n) = N (µ, 0.25), we conclude that

α = P (Y < c|µ = 0) = P

(
Y − 0√

0.25
<

c− 0√
0.25

)
= P (Z < 2c)

and

β = P (Y > c|µ = −1/2) = P

(
Y + 1/2√

0.25
>
c+ 1/2√

0.25

)
= P (Z > 2c+ 1)

where Z ∼ N (0, 1). In order for α = β, we require that P (Z < 2c) = P (Z > 2c + 1).
Since the standard normal distribution is symmetric about 0, we see that we must have
−2c = 2c + 1 or c = −1/4. (DRAW A PICTURE TO SEE WHERE THE MINUS SIGN
COMES FROM!) Consulting Table 4, we find that with c = −1/4, the significance level of
the this test is

α = P (Z < −1/2) = 0.3085.

3. (a) Recall that the generalized likelihood ratio test for the simple null hypothesis H0 :
θ = θ0 against the composite alternative hypothesis HA : θ 6= θ0 has rejection region {Λ ≤ c}
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where Λ is the generalized likelihood ratio

Λ =
L(θ0)

L(θ̂MLE)

where L(θ) is the likelihood function. In this instance,

L(θ) = θn exp

(
−θ

n∑
i=1

yi

)
so that

Λ =

θn0 exp

(
−θ0

n∑
i=1

yi

)

θ̂nMLE exp

(
−θ̂MLE

n∑
i=1

yi

) =

(
θ0

1/Y

)n
exp

(
−θ0

∑
yi + 1/Y ·

∑
yi

)

=
(
θ0Y

)n
exp

(
n− nθ0Y

)
= en θn0 Y

n exp
(
−nθ0Y

)
= en θn0

[
Y exp

(
−θ0Y

)]n
Hence, we see that the rejection region {Λ ≤ c} can be expressed as{

en θn0
[
Y exp

(
−θ0Y

)]n ≤ c
}

=
{
Y exp

(
−θ0Y

)
≤ c1/ne−1 θ−1

0

}
=
{
Y exp

(
−θ0Y

)
≤ C

}
(To be explicit, the suitable constant is C = c1/ne−1 θ−1

0 , although this was “not required.”)

3. (b) We saw in class that −2 log Λ ∼ χ2
1 (approximately). This means that the generalized

likelihood ratio test rejection region is {Λ ≤ c} = {−2 log Λ ≥ K} where K is (yet another)
constant. As we found above,

Λ = en θn0
[
Y exp

(
−θ0Y

)]n
so that

−2 log Λ = −2n− 2n log θ0 − 2n log Y + 2nθ0Y .

Hence, to conduct the GLRT, we need to compare the observed value of −2 log Λ with the
appropriate chi-squared critical value which is χ2

1,0.10 = 2.70554. Since

−2 · 10− 2 · 10 log 1− 2 · 10 · log 1.25 + 2 · 10 · 1 · 1.25 ≈ 2.76856

is the observed value of −2 log Λ, we reject H0 at significance level 0.10. (Note, however,
that since χ2

1,0.05 = 3.84146, we fail to reject H0 at significance level 0.05. Again, this is for
your edification, and was “not required.”)

4. (a) Consider an hypothesis test of H0 : θ = θ0 against HA where HA could be any one of
HA : θ 6= θ0, HA : θ > θ0, or HA : θ < θ0. The significance level α is simply the probability
of a Type I error. A Type I error occurs if H0 is rejected when, in fact, H0 is true. Thus,

α = P (Type I error) = PH0(reject H0).
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4. (b) Consider the linear regression model Y = β0 + β1x + ε with linear trend E(Y ) =
β0 + β1x. The least squares estimators of β0 and β1, written β̂0 and β̂1, yield the least
squares line Ŷ = β̂0 + β̂1x. Now, Ŷ can be used BOTH as an estimator of the parameter
E(Y ) when the input is x, AND as a predictor of the random variable Y when the input is
x. In the first instance, a confidence interval for the parameter E(Y ) is formed, and in the
second instance, a prediction interval for the random variable Y is formed. In addition to
the difference in interpretation as just given, it is important to note that while both the CI
and the PI are centred at Ŷ , they have different formulæ, and hence have different lengths
in general. (See Figure 11.7 on page 566.)

5. The likelihood function (joint density function of the Yi) is

L(β) = f(y1, . . . , yn|β) =
n∏
i=1

f(yi|β) =
(
2πσ2

)−n/2
exp

(
− 1

2σ2

n∑
i=1

(yi − βxi)2

)
.

In order to maximize the likelihood function, it is equivalent to maximize the log-likelihood
function

`(β) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(yi − βxi)2.

Taking derivatives yields

∂

∂β
`(β) =

1

σ2

n∑
i=1

(yi − βxi)xi =
1

σ2

(
n∑
i=1

xiyi − β
n∑
i=1

x2
i

)
.

Setting
∂

∂β
`(β) = 0

and solving gives
n∑
i=1

xiyi − β
n∑
i=1

x2
i = 0

so that

β̂MLE =

n∑
i=1

xiyi

n∑
i=1

x2
i

.

Since this is only a function of one variable, we need to check that this is actually a maximum.
Taking second derivatives gives

∂2

∂β2
`(β) = −

n∑
i=1

x2
i < 0

so that by the second derivative test we do have a maximum. Notice that the maximum
likelihood estimator of β is exactly the least squares estimator of β that you found in Ex-
ercise 11.6. The computation is, in fact, identical. However, the interpretation is quite
distinct.
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